Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
CL
Christine Luscombe
Author with expertise in Conducting Polymer Research
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(14% Open Access)
Cited by:
2,621
h-index:
53
/
i10-index:
132
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

C–H Arylation Reaction: Atom Efficient and Greener Syntheses of π-Conjugated Small Molecules and Macromolecules for Organic Electronic Materials

Ken Okamoto et al.Aug 20, 2013
π-Conjugated small molecules, oligomers, and macromolecules are being used in the fabrication of a wide variety of organic electronic devices such as organic field-effect transistors (OFETs), organic photovoltaic (OPV) devices, and organic light-emitting diodes (OLEDs). Efficient syntheses involving fewer steps, fewer toxic reagents, and highly reactive compounds are needed to lower the cost of materials in a manner that is fundamentally more eco-friendly. Additionally, synthetic approaches for π-conjugated materials with more functional group tolerance are desirable to expand the range of properties that can be realized in such materials. Developing new synthetic routes to materials can both broaden the scope of science that can be explored and increase the probability that interesting materials can be developed in an economically viable manner for inclusion in consumer products. One such synthetic strategy that can impact all of these issues is carbon–hydrogen bond activation and subsequent carbon–carbon bond formation (C–H functionalization). While the C–H functionalizations represented by direct arylation-based methods are not as developed as the widely used Stille and Suzuki methods at this stage, they allow for the use of readily accessible halogenated aromatic substances and can negate the need for toxic organotin reagents. They also hold promise of allowing for the synthesis of previously inaccessible materials. In this Perspective, our goal is to provide an overview of the current status in this challenging field by highlighting (1) the history of preparing π-conjugated small molecules and macromolecules via cross-coupling reactions, (2) advances in preparation of versatile π-conjugated small molecules and macromolecules via transition-metal-catalyzed direct arylation, and (3) the scope, limitations, and challenges for materials science.
0

Externally Initiated Regioregular P3HT with Controlled Molecular Weight and Narrow Polydispersity

Hugo Bronstein et al.Aug 19, 2009
The ability of chemists to design and synthesize pi-conjugated organic polymers with precise control remains the key to technological breakthroughs for using polymer materials in electronic and photonic devices. In this communication, the controlled chain-growth polymerization of regioregular poly(3-hexylthiophene) (P3HT) from an external initiator using 1,3-bis(diphenylphosphino)propane (dppp) as a catalyst ligand is reported. The complexes cis-chloro(phenyl)(dppp)nickel(II) and cis-chloro(o-tolyl)(dppp)nickel(II) were synthesized and characterized by (31)P NMR spectroscopy. These complexes served as initiators in the polymerization of 2-bromo-5-chloromagnesio-3-hexylthiophene in THF at room temperature, affording fully regioregular P3HT with controlled molecular weights and narrow molecular weight distributions, as demonstrated by gel-permeation chromatography and (1)H NMR spectroscopy. MALDI-TOF mass spectrometry revealed that the polymers had almost complete incorporation of the initiating aryl group, and when the aryl group was o-tolyl, only Tol/H end groups were observed. Although external initiators have been used previously with a PPh(3) ligand, that methodology led to polymers with broad molecular weight distributions. This is the first example in which complete control over the externally initiated P3HT polymerization has been achieved.
0

Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors

Lucas Flagg et al.Feb 19, 2019
We study poly(3-{[2-(2-methoxyethoxy)ethoxy]methyl}thiophene-2,5-diyl) (P3MEEMT), a new polythiophene derivative with ethylene glycol-based side chains, as a promising semiconducting polymer for accumulation-mode organic electrochemical transistors (OECTs) with figures of merit comparable to those of state-of-the-art materials. By characterizing the OECT performance of P3MEEMT transistors as a function of the anion, we find that large hydrophobic anions lower the threshold voltage. We find that, compared to poly(3-hexylthiophene-2,5-diyl) (P3HT), P3MEEMT has faster anion injection rates, which we attribute to the hydration of the P3MEEMT crystal lattice. We study P3MEEMT-based OECT and organic field-effect transistor (OFET) performance as a function of film crystallinity and show that changing the crystallinity of the polymer by thermal annealing increases the OFET mobility yet decreases the OECT mobility. We attribute this difference to the fact that, unlike OFETs, OECTs operate in aqueous environments. To probe how hydration affects the operation of OECTs, we investigate the role of water in electrochemical doping using electrochemical quartz microbalance (EQCM) gravimetry. We find that steady-state hydration and hydration dynamics under electrochemical bias differ dramatically between the crystalline and amorphous P3MEEMT films. These results suggest that the presence of water reduces the electronic connectivity between the crystalline regions of P3MEEMT, thus lowering the mobility in solution. Overall, our study highlights the importance of the role of polymer hydration and nanoscale morphology in elucidating design principles for OECT operation.
0

The Effects of Crystallinity on Charge Transport and the Structure of Sequentially Processed F4TCNQ‐Doped Conjugated Polymer Films

D. Scholes et al.Sep 27, 2017
Abstract The properties of molecularly doped films of conjugated polymers are explored as the crystallinity of the polymer is systematically varied. Solution sequential processing (SqP) was used to introduce 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F 4 TCNQ) into poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) while preserving the pristine polymer's degree of crystallinity. X‐ray data suggest that F 4 TCNQ anions reside primarily in the amorphous regions of the film as well as in the P3HT lamellae between the side chains, but do not π‐stack within the polymer crystallites. Optical spectroscopy shows that the polaron absorption redshifts with increasing polymer crystallinity and increases in cross section. Theoretical modeling suggests that the polaron spectrum is inhomogeneously broadened by the presence of the anions, which reside on average 6–8 Å from the polymer backbone. Electrical measurements show that the conductivity of P3HT films doped by F 4 TCNQ via SqP can be improved by increasing the polymer crystallinity. AC magnetic field Hall measurements show that the increased conductivity results from improved mobility of the carriers with increasing crystallinity, reaching over 0.1 cm 2 V −1 s −1 in the most crystalline P3HT samples. Temperature‐dependent conductivity measurements show that polaron mobility in SqP‐doped P3HT is still dominated by hopping transport, but that more crystalline samples are on the edge of a transition to diffusive transport at room temperature.
Load More