Machine learning has shown to be an effective method for early prediction and intervention of Gestational diabetes mellitus (GDM), which greatly decreases GDM incidence, reduces maternal and infant complications and improves the prognosis. However, there is still much room for improvement in data quality, feature dimension, and accuracy. The contributions and mechanism explanations of clinical data at different pregnancy stages to the prediction accuracy are still lacking. More importantly, current models still face notable obstacles in practical applications due to the complex and diverse input features and difficulties in redeployment. As a result, a simple, practical but accurate enough model is urgently needed.