LF
Leigh Fletcher
Author with expertise in Formation and Evolution of the Solar System
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
993
h-index:
51
/
i10-index:
190
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system

O. Grasset et al.Dec 20, 2012
Past exploration of Jupiter's diverse satellite system has forever changed our understanding of the unique environments to be found around gas giants, both in our solar system and beyond. The detailed investigation of three of Jupiter's Galilean satellites (Ganymede, Europa, and Callisto), which are believed to harbour subsurface water oceans, is central to elucidating the conditions for habitability of icy worlds in planetary systems in general. The study of the Jupiter system and the possible existence of habitable environments offer the best opportunity for understanding the origins and formation of the gas giants and their satellite systems. The JUpiter ICy moons Explorer (JUICE) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will perform detailed investigations of Jupiter and its system in all their inter-relations and complexity with particular emphasis on Ganymede as a planetary body and potential habitat. The investigations of the neighbouring moons, Europa and Callisto, will complete a comparative picture of the Galilean moons and their potential habitability. Here we describe the scientific motivation for this exciting new European-led exploration of the Jupiter system in the context of our current knowledge and future aspirations for exploration, and the paradigm it will bring in the study of giant (exo) planets in general.
0

The NEMESIS planetary atmosphere radiative transfer and retrieval tool

P. Irwin et al.Nov 27, 2007
With the exception of in situ atmospheric probes, the most useful way to study the atmospheres of other planets is to observe their electromagnetic spectra through remote observations, either from ground-based telescopes or from spacecraft. Atmospheric properties most consistent with these observed spectra are then derived with retrieval models. All retrieval models attempt to extract the maximum amount of atmospheric information from finite sets of data, but while the problem to be solved is fundamentally the same for any planetary atmosphere, until now all such models have been assembled ad hoc to address data from individual missions. In this paper, we describe a new general-purpose retrieval model, Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS), which was originally developed to interpret observations of Saturn and Titan from the composite infrared spectrometer on board the NASA Cassini spacecraft. NEMESIS has been constructed to be generally applicable to any planetary atmosphere and can be applied from the visible/near-infrared right out to microwave wavelengths, modelling both reflected sunlight and thermal emission in either scattering or non-scattering conditions. NEMESIS has now been successfully applied to the analysis of data from many planetary missions and also ground-based observations.
0
Paper
Citation465
0
Save
0

Temperature and Composition Disturbances in the Southern Auroral Region of Jupiter Revealed by JWST/MIRI

Pablo Rodríguez-Ovalle et al.Jun 1, 2024
Abstract Jupiter's South Polar Region (SPR) was observed by James Webb Space Telescope/Mid‐Infrared Instrument in December 2022. We used the Medium Resolution Spectrometer mode to provide new information about Jupiter's South Polar stratosphere. The southern auroral region was visible and influenced the atmosphere in several ways: (a) In the interior of the southern auroral oval, we retrieved peak temperatures at two distinct pressure levels near 0.01 and 1 mbar, with warmer temperatures with respect to non‐auroral regions of 12 ± 2 K and 37 ± 4 K respectively. A cold polar vortex is centered at 65°S at 10 mbar. (b) We found that the homopause is elevated to km above the 1‐bar pressure level inside the auroral oval compared to km at neighboring latitudes and with an upper altitude of 350 km in regions not affected by auroral precipitation. (c) The retrieved abundance of C 2 H 2 shows an increase within the auroral oval, and it exhibits high abundances throughout the polar region. The retrieved abundance of C 2 H 6 increases toward the pole, without being localized in the auroral oval, in contrast with previous analysis (Sinclair et al., 2018, https://doi.org/10.1016/j.icarus.2017.09.016 ). We determined that the warming at 0.01 mbar and the elevated homopause might be caused by the flux of charged particles depositing their energy in the SPR. The 1‐mbar hotspot may arise from adiabatic heating resulting from auroral‐driven downwelling. The cold region at 10 mbar may be caused by radiative cooling by stratospheric aerosols. The differences in spatial distribution seem to indicate that the hydrocarbons analyzed are affected differently by auroral precipitation.
0
0
Save
0

Clouds and Ammonia in the Atmospheres of Jupiter and Saturn Determined From a Band‐Depth Analysis of VLT/MUSE Observations

P. Irwin et al.Jan 1, 2025
Abstract The visible spectrum of Jupiter contains absorption bands of methane (619 nm) and ammonia (647 nm) that can be used to probe the cloud‐top pressures and ammonia abundance in Jupiter's atmosphere. Recently, it has been shown that filter‐averaged observations of Jupiter made with telescopes and filters accessible to backyard astronomers can be reduced to yield ammonia maps that bear a remarkable similarity with distributions derived using more complex radiative transfer methods. Here, we determine the reliability of this method by applying it to observations made with the MUSE instrument at ESO's Very Large Telescope, and find excellent correspondence with the retrieved products from multiple‐scattering retrieval model analyses. We find that the main level of reflection in Jupiter's atmosphere is at 2–3 bar, which is far beneath the anticipated ammonia ice condensation level at 0.7 bar, and conclude that pure ammonia ice cannot be the main cloud constituent. We show that the spatial variations of ammonia determined at 2–3 bar are strongly correlated with those determined from thermal‐infrared observations, and microwave observations by the Very Large Array and the Juno spacecraft. Finally, we show that the same technique can be applied to observations of Saturn, again yielding maps of ammonia abundance at 2–3 bar that are well‐correlated with thermal‐IR observations made near 5 m by Cassini/VIMS and JWST/MIRI. Similarly, the main level of reflectivity is found to be lie far beneath the expected condensation level of ammonia in Saturn's atmosphere at 1.8 bar.
0

The James Webb Space Telescope Absolute Flux Calibration. III. Mid-infrared Instrument Medium Resolution Integral Field Unit Spectrometer

David Law et al.Jan 13, 2025
Abstract We describe the spectrophotometric calibration of the Mid-Infrared Instrument’s (MIRI) Medium Resolution Spectrometer (MRS) aboard the James Webb Space Telescope. This calibration is complicated by a time-dependent evolution in the effective throughput of the MRS; this evolution is strongest at long wavelengths, approximately a factor of 2 at 25 μ m over the first 2 yr of the mission. We model and correct for this evolution through regular observations of internal calibration lamps. Pixel flat fields are constructed from observations of the infrared-bright planetary nebula NGC 7027, and photometric aperture corrections from a combination of theoretical models and observations of bright standard stars. We tie the 5–18 μ m flux calibration to high signal-to-noise ratio (S/N; ∼600–1000) observations of the O9 V star 10 Lacertae, scaled to the average calibration factor of nine other spectrophotometric standards. We calibrate the 18–28 μ m spectral range using a combination of observations of main belt asteroid 515 Athalia and the circumstellar disk around young stellar object SAO 206462. The photometric repeatability is stable to better than 1% in the wavelength range 5–18 μ m, and the S/N ratio of the delivered spectra is consistent between bootstrapped measurements, pipeline estimates, and theoretical predictions. The MRS point-source calibration agrees with that of the MIRI imager to within 1% from 7 to 21 μ m and is approximately 1% fainter than prior Spitzer observations, while the extended source calibration agrees well with prior Cassini Composite Infrared Spectrometer and Voyager Infrared Interferometer Spectrometer and Radiometer observations.