EP
Emiel Por
Author with expertise in Astronomical Instrumentation and Spectroscopy
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
4
(0% Open Access)
Cited by:
1
h-index:
12
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-contrast imager for complex aperture telescopes (HiCAT): 11. System-level demonstration of the apodized pupil Lyot coronagraph with a segmented aperture in air

Keira Brooks et al.Aug 23, 2024
We present the final results of the Apodized Pupil Lyot Coronagraph (APLC) on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, under NASA's Strategic Astrophysics Technology program. The HiCAT testbed was developed over the past decade to enable a system-level demonstration of coronagraphy for exoplanet direct imaging with the future Habitable Wolds Observatory. HiCAT includes an active, segmented telescope simulator, a coronagraph, and metrology systems (Low-order and Mid-Order Zernike Wavefront Sensors, and Phase Retrieval camera). These results correspond to an off-axis (un-obscured) configuration, as was envisioned in the 2020 Decadal Survey Recommendations. Narrowband and broadband dark holes are generated using two continuous deformable mirrors (DM) to control high order wavefront aberrations, and low-order drifts can be further stabilized using the LOWFS loop. The APLC apodizers, manufactured using carbon nanotubes, were optimized for broadband performance and include the calibrated geometric aperture. The objectives of this SAT program were organized in three milestones to reach a system-like level demonstration of segmented-aperture coronagraphy, from static component demonstration to system-level demonstration under both natural and artificial disturbances. HiCAT is, to this date, the only testbed facility able to demonstrate high-contrast coronagraphy with a truly segmented aperture, as is required for the Habitable World Observatory, albeit limited to ambient conditions, corresponding to NASA's Technology Readiness Level (TRL) 4. Results presented here include 6 × 10−8 (90% CI) contrast in 9% bandpass in a 360 deg dark hole with inner and outer working angles of 4.4λ/Dpupil and 11λ/Dpupil. Narrowband contrast (3% bandpass) reaches 2.4 × 10−8 (90% confidence interval). We first explore the open-loop stability of the entire system quantify the baseline testbed performance. Then we present dark hole stabilization using both high-order and low-order loops under both low-order and segment level drifts in narrow and broadband. We compare experimental data with that obtained by the end-to-end HiCAT simulator. We establish that current performance limitations are due to a combination of ambient conditions, detector and deformable mirrors noises (including quantization), and model mismatch.
0

Exoplanet detection techniques for direct imaging dark zone maintenance data sets

Susan Redmond et al.Aug 23, 2024
With the commencement of the development of the Habitable Worlds Observatory, it is imperative that the community has an understanding of (1) the stability requirements for the observatory to inform the design and (2) the gains expected from post-processing to inform observing scenarios and science yield estimates. We demonstrate that a previously developed, photon-efficient dark-zone maintenance (DZM) algorithm, that corrects quasi-static wavefront error drifts by using only science images, is compatible with traditional post-processing techniques. Further, we augment the DZM algorithm to estimate the coherent and incoherent light separately and introduce three novel post-processing techniques that leverage the concurrent estimation of coherent and incoherent light. With the DZM algorithm implemented on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed at the Space Telescope Science Institute (STScI), artificial drifts are injected as a random walk on a set of deformable mirrors (DMs) and are corrected with DZM. An injected fake planet is recovered in post-processing using a variety of techniques, such as angular differential imaging (ADI), and three novel techniques presented in this paper: incoherent accumulated imaging (IAI), software-based coherent differential imaging (CDI), and coherent reference differential imaging (CoRDI). All post-processing techniques can recover an injected planet at the same contrast level as the dark-zone background contrast (∼ 8 × 10−8), and the ADI technique is shown to recover a 4 × 10−8 planet in a 8 × 10−8 dark zone. For a space-based observatory, this would mean that if the instrument can reach a contrast level, we can maintain it and recover a planet that is undetectable in a single frame.