MO
Masanori Ozaki
Author with expertise in Advancements in Particle Detector Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(50% Open Access)
Cited by:
3,410
h-index:
83
/
i10-index:
429
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THEFERMILARGE AREA TELESCOPE

M. Ackermann et al.Aug 7, 2012
Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1–100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L0.1–100 GeV/L1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L0.1–100 GeV/L8–1000 μm) = −4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M☉ yr−1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4–2.4 × 10−6 ph cm−2 s−1 sr−1 (4%–23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ∼10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.
0

Status of Xtend telescope onboard X-Ray Imaging and Spectroscopy Mission (XRISM)

Koji Mori et al.Aug 21, 2024
Xtend is one of the two telescopes onboard the X-ray imaging and spectroscopy mission (XRISM), which was launched on September 7th, 2023. Xtend comprises the Soft X-ray Imager (SXI), an X-ray CCD camera, and the X-ray Mirror Assembly (XMA), a thin-foil-nested conically approximated Wolter-I optics. A large field of view of 38′ × 38′ over the energy range from 0.4 to 13 keV is realized by the combination of the SXI and XMA with a focal length of 5.6 m. The SXI employs four P-channel, back-illuminated type CCDs with a thick depletion layer of 200 μm. The four CCD chips are arranged in a 2×2 grid and cooled down to −110°C with a single-stage Stirling cooler. Before the launch of XRISM, we conducted a month-long spacecraft thermal vacuum test. The performance verification of the SXI was successfully carried out in a course of multiple thermal cycles of the spacecraft. About a month after the launch of XRISM, the SXI was carefully activated and the soundness of its functionality was checked by a step-by-step process. Commissioning observations followed the initial operation. We here present pre- and post-launch results verifying the Xtend performance. All the in-orbit performances are consistent with those measured on ground and satisfy the mission requirement. Extensive calibration studies are ongoing.
0

In-orbit performance of the Xtend-XMA onboard XRISM

Kouichi Tamura et al.Aug 21, 2024
XRISM (X-ray Imaging and Spectroscopy Mission) is an X-ray astronomy satellite developed in collaboration with JAXA, NASA and ESA. It successfully launched on Sept. 7, 2023. Two complementary X-ray telescopes, Resolve and Xtend are on-board XRISM. Resolve uses the pixelized X-ray micro calorimeter developed by NASA/GSFC and has very high energy resolution of 5 eV. On the other hand, Xtend uses an X-ray CCD camera as its focal plane detector which has high spatial resolution and a wide field of view. We evaluated the performance of the X-ray Mirror Assembly (XMA) for Xtend using data observed during the commissioning and PV phases of XRISM. To verify the imaging performance, the Point Spread Functions (PSF) generated from the observations of NGC 4151 and PDS 456 were compared with the ground-calibration results. The results show that the imaging performance of Xtend-XMA is not significantly different from that of the ground calibration, and that it meet the requirement. The effective area was verified by comparing the results of simultaneous observations of 3C 273 by XRISM and four X-ray astronomy satellites (Chandra, XMM-Newton, NuSTAR, and Swift). The results of the fitting of the X-ray spectrum of Xtend show no significant difference from the results of other satellites, suggesting the effective area used for fitting is correct. The on-axis position on the detector was estimated from the intensity of the Abell 2029 observations at four off-axis angles. The on-axis is about 40 arcsec away from the aim point, and the decrease in effective area at the aim point is less than 1%. Stray light observations of the Crab Nebula at 60 arcmin off-axis were obtained at two different satellite roll angles. The stray light intensity obtained at each roll angle was significantly different, verifying the dependence of the stray light on the roll angle.