KT
Kazuhiro Takanabe
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
21
(43% Open Access)
Cited by:
21,763
h-index:
66
/
i10-index:
189
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion

Tatsuya Shinagawa et al.Sep 8, 2015
Microkinetic analyses of aqueous electrochemistry involving gaseous H2 or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report.
0

Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design

Kazuhiro TakanabeOct 11, 2017
A widely used term, "photocatalysis", generally addresses photocatalytic (energetically downhill) and photosynthetic (energetically uphill) reactions and refers to the use of photonic energy as a driving force for chemical transformations, i.e., electron reorganization to form/break chemical bonds. Although there are many such important reactions, this contribution focuses on the fundamental aspects of photocatalytic water splitting into hydrogen and oxygen by using light from the solar spectrum, which is one of the most investigated photosynthetic reactions. Photocatalytic water splitting using solar energy is considered to be artificial photosynthesis that produces a solar fuel because the reaction mimics nature's photosynthesis not only in its redox reaction type but also in its thermodynamics (water splitting: 1.23 eV vs glucose formation: 1.24 eV). To achieve efficient photocatalytic water splitting, all of the parameters, though involved at different time scales and spatial resolutions, should be optimized because the overall efficiency is obtained as the multiplication of all these fundamental efficiencies. The purpose of this Review is to provide the guidelines of a concept, "photocatalysis by design", which is the opposite of "black box screening"; this concept refers to making quantitative descriptions of the associated physical and chemical properties to determine which events/parameters have the most impact on improving the overall photocatalytic performance, in contrast to arbitrarily ranking different photocatalyst materials. First, the properties that can be quantitatively measured or calculated are identified. Second, the quantities of these identified properties are determined by performing adequate measurements and/or calculations. Third, the obtained values of these properties are integrated into equations so that the kinetic/energetic bottlenecks of specific properties/processes can be determined, and the properties can then be altered to further improve the process. Accumulation of knowledge ranging in fields from solid-state physics to electrochemistry and the use of a multidisciplinary approach to conduct measurements and modeling in a quantitative manner are required to fully understand and improve the efficiency of photocatalysis.
0
Paper
Citation746
0
Save
0

Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters

Ayman Allian et al.Mar 2, 2011
Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis at conditions typical of its industrial practice. CO oxidation turnover rates and the dynamics and thermodynamics of adsorption−desorption processes on cluster surfaces saturated with chemisorbed CO were measured on 1−20 nm Pt clusters under conditions of strict kinetic control. Turnover rates are proportional to O2 pressure and inversely proportional to CO pressure, consistent with kinetically relevant irreversible O2 activation steps on vacant sites present within saturated CO monolayers. These conclusions are consistent with the lack of isotopic scrambling in C16O−18O2−16O2 reactions, and with infrared bands for chemisorbed CO that did not change within a CO pressure range that strongly influenced CO oxidation turnover rates. Density functional theory estimates of rate and equilibrium constants show that the kinetically relevant O2 activation steps involve direct O2* (or O2) reactions with CO* to form reactive O*−O−C*═O intermediates that decompose to form CO2 and chemisorbed O*, instead of unassisted activation steps involving molecular adsorption and subsequent dissociation of O2. These CO-assisted O2 dissociation pathways avoid the higher barriers imposed by the spin-forbidden transitions required for unassisted O2 dissociation on surfaces saturated with chemisorbed CO. Measured rate parameters for CO oxidation were independent of Pt cluster size; these parameters depend on the ratio of rate constants for O2 reactions with CO* and CO adsorption equilibrium constants, which reflect the respective activation barriers and reaction enthalpies for these two steps. Infrared spectra during isotopic displacement and thermal desorption with 12CO−13CO mixtures showed that the binding, dynamics, and thermodynamics of CO chemisorbed at saturation coverages do not depend on Pt cluster size in a range that strongly affects the coordination of Pt atoms exposed at cluster surfaces. These data and their theoretical and mechanistic interpretations indicate that the remarkable structure insensitivity observed for CO oxidation reactions reflects average CO binding properties that are essentially independent of cluster size. Theoretical estimates of rate and equilibrium constants for surface reactions and CO adsorption show that both parameters increase as the coordination of exposed Pt atoms decreases in Pt201 cluster surfaces; such compensation dampens but does not eliminate coordination and cluster size effects on measured rate constants. The structural features and intrinsic non-uniformity of cluster surfaces weaken when CO forms saturated monolayers on such surfaces, apparently because surfaces and adsorbates restructure to balance CO surface binding and CO−CO interaction energies.
0
Citation490
0
Save
0

Cu–Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO

Saad Sarfraz et al.Mar 23, 2016
We report a selective and stable electrocatalyst utilizing non-noble metals consisting of Cu and Sn for the efficient and selective reduction of CO2 to CO over a wide potential range. The bimetallic electrode was prepared through the electrodeposition of Sn species on the surface of oxide-derived copper (OD-Cu). The Cu surface, when decorated with an optimal amount of Sn, resulted in a Faradaic efficiency (FE) for CO greater than 90% and a current density of −1.0 mA cm–2 at −0.6 V vs RHE, compared to the CO FE of 63% and −2.1 mA cm–2 for OD-Cu. Excess Sn on the surface caused H2 evolution with a decreased current density. X-ray diffraction (XRD) suggests the formation of Cu–Sn alloy. Auger electron spectroscopy of the sample surface exhibits zerovalent Cu and Sn after the electrodeposition step. Density functional theory (DFT) calculations show that replacing a single Cu atom with a Sn atom leaves the d-band orbitals mostly unperturbed, signifying no dramatic shifts in the bulk electronic structure. However, the Sn atom discomposes the multifold sites on pure Cu, disfavoring the adsorption of H and leaving the adsorption of CO relatively unperturbed. Our catalytic results along with DFT calculations indicate that the presence of Sn on reduced OD-Cu diminishes the hydrogenation capability—i.e., the selectivity toward H2 and HCOOH—while hardly affects the CO productivity. While the pristine monometallic surfaces (both Cu and Sn) fail to selectively reduce CO2, the Cu–Sn bimetallic electrocatalyst generates a surface that inhibits adsorbed H*, resulting in improved CO FE. This study presents a strategy to provide low-cost non-noble metals that can be utilized as a highly selective electrocatalyst for the efficient aqueous reduction of CO2.
Load More