YL
Yi Li
Author with expertise in Multipotent Mesenchymal Stem Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(57% Open Access)
Cited by:
5,012
h-index:
49
/
i10-index:
125
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Therapeutic Benefit of Intravenous Administration of Bone Marrow Stromal Cells After Cerebral Ischemia in Rats

Jieli Chen et al.Apr 1, 2001
Background and Purpose —We tested the hypothesis that intravenous infusion of bone marrow derived–marrow stromal cells (MSCs) enter the brain and reduce neurological functional deficits after stroke in rats. Methods —Rats (n=32) were subjected to 2 hours of middle cerebral artery occlusion (MCAO). Test groups consisted of MCAO alone (group 1, n=6); intravenous infusion of 1×10 6 MSCs at 24 hours after MCAO (group 2, n=6); or infusion of 3×10 6 MSCs (group 3, n=7). Rats in groups 1 to 3 were euthanized at 14 days after MCAO. Group 4 consisted of MCAO alone (n=6) and group 5, intravenous infusion of 3×10 6 MSCs at 7 days after MCAO (n=7). Rats in groups 4 and 5 were euthanized at 35 days after MCAO. For cellular identification, MSCs were prelabeled with bromodeoxyuridine. Behavioral tests (rotarod, adhesive-removal, and modified Neurological Severity Score [NSS]) were performed before and at 1, 7, 14, 21, 28, and 35 days after MCAO. Immunohistochemistry was used to identify MSCs or cells derived from MSCs in brain and other organs. Results —Significant recovery of somatosensory behavior and Neurological Severity Score ( P <0.05) were found in animals infused with 3×10 6 MSCs at 1 day or 7 days compared with control animals. MSCs survive and are localized to the ipsilateral ischemic hemisphere, and a few cells express protein marker phenotypic neural cells. Conclusions —MSCs delivered to ischemic brain tissue through an intravenous route provide therapeutic benefit after stroke. MSCs may provide a powerful autoplastic therapy for stroke.
0
Citation1,624
0
Save
0

Intravenous Administration of Human Bone Marrow Stromal Cells Induces Angiogenesis in the Ischemic Boundary Zone After Stroke in Rats

Jieli Chen et al.Apr 3, 2003
We tested the hypothesis that intravenous infusion of human bone marrow stromal cells (hMSCs) promotes vascular endothelial growth factor (VEGF) secretion, VEGF receptor 2 (VEGFR2) expression and angiogenesis in the ischemic boundary zone (IBZ) after stroke. hMSCs (1×10 6 ) were intravenously injected into rats 24 hours after middle cerebral artery occlusion (MCAo). Laser scanning confocal microscopy (LSCM), immunohistochemistry and ELISA were performed to assay angiogenesis and levels of human and rat VEGF in the host brain, respectively. In addition, capillary-like tube formation was measured using mouse brain-derived endothelial cells (MBDECs). Morphological and three dimensional image analyses revealed significant ( P <0.05) increases in numbers of enlarged and thin walled blood vessels and numbers of newly formed capillaries at the boundary of the ischemic lesion in rats (n=12) treated with hMSCs compared with numbers in rats (n=12) treated with PBS. ELISA measurements showed that treatment with hMSCs significantly ( P <0.05) raised endogenous rat VEGF levels in the IBZ from 10.5±1.7 ng/mL in the control group to 17.5±1.6 ng/mL in the hMSC-treated group. In addition, treatment with hMSCs increased endogenous VEGFR2 immunoreactivity. In vitro, when MBDECs were incubated with the supernatant obtained from cultured hMSCs, capillary-like tube formation was significantly ( P <0.01) induced. However, hMSC-induced capillary-like tube formation was significantly ( P <0.01) inhibited when the endothelial cells were incubated with the supernatant from hMSCs in the presence of a neutralizing anti-VEGFR2. These data suggest that treatment of stroke with hMSCs enhances angiogenesis in the host brain and hMSC-enhanced angiogenesis is mediated by increases in levels of endogenous rat VEGF and VEGFR2.
0
Citation642
0
Save
0

Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat

Jieli Chen et al.Jul 30, 2003
Abstract The present study investigates the induction of neurogenesis, reduction of apoptosis, and promotion of basic fibroblast growth factor (bFGF) expression as possible mechanisms by which treatment of stroke with bone marrow stromal cells (MSCs) improves neurological functional recovery. Additionally, for the first time, we treated cerebral ischemia in female rats with intraveneous administration of MSCs. Female rats were subjected to 2 hr of middle cerebral artery occlusion (MCAo), followed by an injection of 3 × 10 6 male (for Y chromosome labeling) rat MSCs or phosphate‐buffered saline (PBS) into the tail vein 24 hr after MCAo. All animals received daily injection of bromodeoxyuridine (BrdU; 50 mg/kg, i.p.) for 13 days after treatment for identification of newly synthesized DNA. Animals were sacrificed at 14 days after MCAo. Behavioral tests (rotarod and adhesive‐removal tests) were performed. In situ hybridization, immunohistochemistry, and terminal deoxynucleotidyltransferase (TdT)‐mediated dUTP‐biotin nick‐end labeling (TUNEL) were performed to identify transplanted MSCs (Y chromosome), BrdU, bFGF, and apoptotic cells in the brain. Significant recovery of behavior was found in MSC‐treated rats at 7 days in the somatosensory test and at 14 days in the motor test after MCAo compared with control, PBS‐treated animals ( P < .05). MSCs were found to survive and preferentially localize to the ipsilateral ischemic hemisphere. Significantly more BrdU‐positive cells were located in the subventricular zone ( P < .05), and significantly fewer apoptotic cells and more bFGF immunoreactive cell were found in the ischemic boundary area ( P < .05) of MSC‐treated rats than in PBS‐treated animals. Here we demonstrate that intravenously administered male MSCs increase bFGF expression, reduce apoptosis, promote endogenous cellular proliferation, and improve functional recovery after stroke in female rats. © 2003 Wiley‐Liss, Inc.
0
Citation559
0
Save
0

Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats

Jieli Chen et al.Aug 1, 2001

Abstract

 We tested the hypothesis that bone marrow stromal cells (MSCs) transplanted into the ischemic boundary zone, survive, differentiate and improve functional recovery after middle cerebral artery occlusion (MCAo). MSCs were harvested from adult rats and cultured with or without nerve growth factor (NGF). For cellular identification, MSCs were prelabeled with bromodeoxyuridine (BrdU). Rats (n=24) were subjected to 2 h of MCAo, received grafts at 24 h and were euthanized at 14 days after MCAo. Test groups consisted of: (1) control-MCAo alone (n=8); (2) intracerebral transplantation of MSCs (n=8); (3) intracerebral transplantation of MSCs cultured with NGF (n=8). Immunohistochemistry was used to identify cells from MSCs. Behavioral tests (rotarod, adhesive-removal and modified neurological severity score [NSS]) were performed before and after MCAo. The data demonstrate that MSCs survive, migrate and differentiate into phenotypic neural cells. Significant recovery of somatosensory behavior (p<0.05) and NSS (p<0.05) were found in animals transplanted with MSCs compared with control animals. Animals that received MSCs cultured with NGF displayed significant recovery in motor (p<0.05), somatosensory (p<0.05) and NSS (p<0.05) behavioral tests compared with control animals. Our data suggest that intracerebral transplantation of MSCs may provide a powerful autoplastic therapy for stroke.
0
Citation526
0
Save
0

Intrastriatal Transplantation of Bone Marrow Nonhematopoietic Cells Improves Functional Recovery After Stroke in Adult Mice

Yi Li et al.Sep 1, 2000
The authors transplanted adult bone marrow nonhematopoietic cells into the striatum after embolic middle cerebral artery occlusion (MCAO). Mice (n = 23; C57BL/6J) were divided into four groups: (1) mice (n = 5) were subjected to MCAO and transplanted with bone marrow nonhematopoietic cells (prelabeled by bromodeoxyuridine, BrdU) into the ischemic striatum, (2) MCAO alone (n = 8), (3) MCAO with injection of phosphate buffered saline (n = 5), and (4) bone marrow nonhematopoietic cells injected into the normal striatum (n = 5). Mice were killed at 28 days after stroke. BrdU reactive cells survived and migrated a distance of approximately 2.2 mm from the grafting areas toward the ischemic areas. BrdU reactive cells expressed the neuronal specific protein NeuN in 1% of BrdU stained cells and the astrocytic specific protein glial fibrillary acidic protein (GFAP) in 8% of the BrdU stained cells. Functional recovery from a rotarod test (P < 0.05) and modified neurologic severity score tests (including motor, sensory, and reflex; P < 0.05) were significantly improved in the mice receiving bone marrow nonhematopoietic cells compared with MCAO alone. The current findings suggest that the intrastriatal transplanted bone marrow nonhematopoietic cells survived in the ischemic brain and improved functional recovery of adult mice even though infarct volumes did not change significantly. Bone marrow nonhematopoietic cells may provide a new avenue to promote recovery of injured brain.
0
Citation499
0
Save
0

Therapeutic Benefit of Bone Marrow Stromal Cells Administered 1 Month after Stroke

Li Shen et al.Apr 5, 2006
Bone marrow stromal cells (BMSCs) facilitate functional recovery in rats after stroke when administered acutely (1 day) or subacutely (7 days). In this study, we postponed the time of cell transplantation to 1 month after stroke. Female retired breeder rats were subjected to 2 h of middle cerebral artery occlusion (MCAo). Male BMSCs (3 x 10(6)) or phosphate-buffered saline were administered intravenously, and the animals were killed 3 months later. An additional population of nontreated rats was killed at 1 month after MCAo. Significant recovery of behavior was found in BMSC-treated rats beginning at 1 month after cell injection in the modified neurologic severity score test and the adhesive-removal test compared with control animals (P<0.05). In situ hybridization showed that BMSCs survived and preferentially localized to the ipsilateral hemisphere. Double staining revealed that approximately 13% and 6% Y-chromosome-positive cells expressed the astrocyte marker, glial fibrillary acidic protein, and the neuronal marker, microtubule-associated protein-2, respectively. In addition, BMSC treatment reduced scar thickness, and increased the number of proliferating cells and oligodendrocyte precursor cells along the subventricular zone in the ipsilateral hemisphere. Expression of the chemokine stromal-cell-derived factor-1 (SDF-1) was significantly increased along the ischemic boundary zone compared with the corresponding areas in the contralateral hemisphere at 1 month and 4 months (P<0.01) after stroke. The SDF-1 receptor, CXC-chemokine receptor-4 (CXCR4), was expressed in BMSCs both in vitro and in vivo. Our data show that the time window of BMSC therapy is at least 1 month after stroke; the interaction of SDF-1/CXCR4 may contribute to the trafficking of transplanted BMSCs.
0
Citation342
0
Save
0

Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice

Qian Zhang et al.May 18, 2005
We investigated the treatment of remitting–relapsing experimental autoimmune encephalomyelitis (EAE) in mice with human bone marrow stromal cells (hBMSCs). hBMSCs were injected intravenously into EAE mice upon onset of paresis. Neurological functional tests were scored daily by grading clinical signs (score 0–5). Immunohistochemistry was performed to measure the transplanted hBMSCs, cell proliferation (bromodeoxyuridine, BrdU), oligodendrocyte progenitor cells (NG2), oligodendrocytes (RIP), and brain-derived neurotrophic factor (BDNF). The maximum clinical score and the average clinical scores were significantly decreased in the hBMSC-transplanted mice compared to the phosphate-buffered-saline-treated EAE controls, indicating a significant improvement in function. Demyelination significantly decreased, and BrdU+ and BDNF+ cells significantly increased in the hBMSC-treated mice compared to controls. Some BrdU+ cells were colocalized with NG2+ and RIP+ immunostaining. hBMSCs also significantly reduced the numbers of vessels containing inflammatory cell infiltration. These data indicate that hBMSC treatment improved functional recovery after EAE in mice, possibly, via reducing inflammatory infiltrates and demyelination areas, stimulating oligodendrogenesis, and by elevating BDNF expression.
0
Citation337
0
Save
0

Increasing tPA Activity in Astrocytes Induced by Multipotent Mesenchymal Stromal Cells Facilitate Neurite Outgrowth after Stroke in the Mouse

Hongqi Xin et al.Feb 2, 2010
We demonstrate that tissue plasminogen activator (tPA) and its inhibitors contribute to neurite outgrowth in the central nervous system (CNS) after treatment of stroke with multipotent mesenchymal stromal cells (MSCs). In vivo, administration of MSCs to mice subjected to middle cerebral artery occlusion (MCAo) significantly increased activation of tPA and downregulated PAI-1 levels in the ischemic boundary zone (IBZ) compared with control PBS treated mice, concurrently with increases of myelinated axons and synaptophysin. In vitro, MSCs significantly increased tPA levels and concomitantly reduced plasminogen activator inhibitor 1 (PAI-1) expression in astrocytes under normal and oxygen and glucose deprivation (OGD) conditions. ELISA analysis of conditioned medium revealed that MSCs stimulated astrocytes to secrete tPA. When primary cortical neurons were cultured in the conditioned medium from MSC co-cultured astrocytes, these neurons exhibited a significant increase in neurite outgrowth compared to conditioned medium from astrocytes alone. Blockage of tPA with a neutralizing antibody or knock-down of tPA with siRNA significantly attenuated the effect of the conditioned medium on neurite outgrowth. Addition of recombinant human tPA into cortical neuronal cultures also substantially enhanced neurite outgrowth. Collectively, these in vivo and in vitro data suggest that the MSC mediated increased activation of tPA in astrocytes promotes neurite outgrowth after stroke.
0
Citation99
0
Save
Load More