YW
Yang Wu
Author with expertise in Human Action Recognition and Pose Estimation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
465
h-index:
25
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Depth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals

Shanxin Yuan et al.Jun 1, 2018
In this paper, we strive to answer two questions: What is the current state of 3D hand pose estimation from depth images? And, what are the next challenges that need to be tackled? Following the successful Hands In the Million Challenge (HIM2017), we investigate the top 10 state-of-the-art methods on three tasks: single frame 3D pose estimation, 3D hand tracking, and hand pose estimation during object interaction. We analyze the performance of different CNN structures with regard to hand shape, joint visibility, view point and articulation distributions. Our findings include: (1) isolated 3D hand pose estimation achieves low mean errors (10 mm) in the view point range of [70, 120] degrees, but it is far from being solved for extreme view points; (2) 3D volumetric representations outperform 2D CNNs, better capturing the spatial structure of the depth data; (3) Discriminative methods still generalize poorly to unseen hand shapes; (4) While joint occlusions pose a challenge for most methods, explicit modeling of structure constraints can significantly narrow the gap between errors on visible and occluded joints.
0

Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework

Qingyu Song et al.Oct 1, 2021
Localizing individuals in crowds is more in accordance with the practical demands of subsequent high-level crowd analysis tasks than simply counting. However, existing localization based methods relying on intermediate representations (i.e., density maps or pseudo boxes) serving as learning targets are counter-intuitive and error-prone. In this paper, we propose a purely point-based framework for joint crowd counting and individual localization. For this framework, instead of merely reporting the absolute counting error at image level, we propose a new metric, called density Normalized Average Precision (nAP), to provide more comprehensive and more precise performance evaluation. Moreover, we design an intuitive solution under this framework, which is called Point to Point Network (P2PNet). P2PNet discards superfluous steps and directly predicts a set of point proposals to represent heads in an image, being consistent with the human annotation results. By thorough analysis, we reveal the key step towards implementing such a novel idea is to assign optimal learning targets for these proposals. Therefore, we propose to conduct this crucial association in an one-to-one matching manner using the Hungarian algorithm. The P2PNet not only significantly surpasses state-of-the-art methods on popular counting benchmarks, but also achieves promising localization accuracy. The codes will be available at: TencentYoutuResearch/CrowdCounting-P2PNet.
0

Multi-Condition Latent Diffusion Network for Scene-Aware Neural Human Motion Prediction

Xuehao Gao et al.Jan 1, 2024
Inferring 3D human motion is fundamental in many applications, including understanding human activity and analyzing one's intention. While many fruitful efforts have been made to human motion prediction, most approaches focus on pose-driven prediction and inferring human motion in isolation from the contextual environment, thus leaving the body location movement in the scene behind. However, real-world human movements are goal-directed and highly influenced by the spatial layout of their surrounding scenes. In this paper, instead of planning future human motion in a "dark" room, we propose a Multi-Condition Latent Diffusion network (MCLD) that reformulates the human motion prediction task as a multi-condition joint inference problem based on the given historical 3D body motion and the current 3D scene contexts. Specifically, instead of directly modeling joint distribution over the raw motion sequences, MCLD performs a conditional diffusion process within the latent embedding space, characterizing the cross-modal mapping from the past body movement and current scene context condition embeddings to the future human motion embedding. Extensive experiments on large-scale human motion prediction datasets demonstrate that our MCLD achieves significant improvements over the state-of-the-art methods on both realistic and diverse predictions.