MH
Mathieu Huot
Author with expertise in Learning and Inference in Bayesian Networks
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
0
h-index:
6
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Probabilistic Programming with Programmable Variational Inference

McCoy Becker et al.Jun 20, 2024
Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.
0

GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables

Mathieu Huot et al.Jun 20, 2024
This article presents GenSQL, a probabilistic programming system for querying probabilistic generative models of database tables. By augmenting SQL with only a few key primitives for querying probabilistic models, GenSQL enables complex Bayesian inference workflows to be concisely implemented. GenSQL's query planner rests on a unified programmatic interface for interacting with probabilistic models of tabular data, which makes it possible to use models written in a variety of probabilistic programming languages that are tailored to specific workflows. Probabilistic models may be automatically learned via probabilistic program synthesis, hand-designed, or a combination of both. GenSQL is formalized using a novel type system and denotational semantics, which together enable us to establish proofs that precisely characterize its soundness guarantees. We evaluate our system on two case real-world studies -- an anomaly detection in clinical trials and conditional synthetic data generation for a virtual wet lab -- and show that GenSQL more accurately captures the complexity of the data as compared to common baselines. We also show that the declarative syntax in GenSQL is more concise and less error-prone as compared to several alternatives. Finally, GenSQL delivers a 1.7-6.8x speedup compared to its closest competitor on a representative benchmark set and runs in comparable time to hand-written code, in part due to its reusable optimizations and code specialization.