MB
Michael Becker
Author with expertise in Perovskite Solar Cell Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1,300
h-index:
19
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Bright triplet excitons in caesium lead halide perovskites

Michael Becker et al.Jan 1, 2018
Nanostructured semiconductors emit light from electronic states known as excitons[1]. According to Hund's rules[2], the lowest energy exciton in organic materials should be a poorly emitting triplet state. Analogously, the lowest exciton level in all known inorganic semiconductors is believed to be optically inactive. These 'dark' excitons (into which the system can relax) hinder light-emitting devices based on semiconductor nanostructures. While strategies to diminish their influence have been developed[3-5], no materials have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in quasi-cubic lead halide perovskites is optically active. We first use the effective-mass model and group theory to explore this possibility, which can occur when the strong spin-orbit coupling in the perovskite conduction band is combined with the Rashba effect [6-10]. We then apply our model to CsPbX3 (X=Cl,Br,I) nanocrystals[11], for which we measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright character of the lowest exciton immediately explains the anomalous photon-emission rates of these materials, which emit 20 and 1,000 times faster[12] than any other semiconductor nanocrystal at room[13-16] and cryogenic[17] temperatures, respectively. The bright exciton is further confirmed by detailed analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals[18], which are already used in lighting[19,20], lasers[21,22], and displays[23], these optically active excitons can lead to materials with brighter emission and enhanced absorption. More generally, our results provide criteria for identifying other semiconductors exhibiting bright excitons with potentially broad implications for optoelectronic devices.
0

Superfluorescence from lead halide perovskite quantum dot superlattices

Gabriele Rainò et al.Nov 1, 2018
An ensemble of emitters can behave significantly different from its individual constituents when interacting coherently via a common light field. After excitation, collective coupling gives rise to an intriguing many-body quantum phenomenon, resulting in short, intense bursts of light: so-called superfluorescence. Because it requires a fine balance of interaction between the emitters and their decoupling from the environment, together with close identity of the individual emitters, superfluorescence has thus far been observed only in a limited number of systems, such as atomic and molecular gases and semiconductor crystals, and could not be harnessed for applications. For colloidal nanocrystals, however, which are of increasing relevance in a number of opto-electronic applications, the generation of superfluorescent light was precluded by inhomogeneous emission broadening, low oscillator strength, and fast exciton dephasing. Using caesium lead halide (CsPbX3, X = Cl, Br) perovskite nanocrystals that are self-organized into highly ordered three-dimensional superlattices allows us to observe key signatures of superfluorescence: red-shifted emission with more than ten-fold accelerated radiative decay, extension of the first-order coherence time by more than a factor of four, photon bunching, and delayed emission pulses with Burnham-Chiao ringing behaviour at high excitation density. These mesoscopically extended coherent states can be employed to boost opto-electronic device performances and enable entangled multi-photon quantum light sources.
0

Circularly Polarized Luminescence Without External Magnetic Fields from Individual CsPbBr3 Perovskite Quantum Dots

Virginia Oddi et al.Jun 21, 2024
Lead halide perovskite quantum dots (QDs), the latest generation of the colloidal QD family, exhibit outstanding optical properties, which are now exploited as both classical and quantum light sources. Most of their rather exceptional properties are related to the peculiar exciton fine-structure of band-edge states, which can support unique bright triplet excitons. The degeneracy of the bright triplet excitons is lifted with energetic splitting in the order of millielectronvolts, which can be resolved by the photoluminescence (PL) measurements of single QDs at cryogenic temperatures. Each bright exciton fine-structure-state (FSS) exhibits a dominantly linear polarization, in line with several theoretical models based on the sole crystal field, exchange interaction, and shape anisotropy. Here, we show that in addition to a high degree of linear polarization, the individual exciton FSS can exhibit a non-negligible degree of circular polarization even without external magnetic fields by investigating the four Stokes parameters of the exciton fine-structure in individual CsPbBr3 QDs through Stokes polarimetric measurements. We observe a degree of circular polarization up to ∼38%, which could not be detected by using the conventional polarimetric technique. In addition, we found a consistent transition from left- to right-hand circular polarization within the fine-structure triplet manifold, which was observed in magnetic-field-dependent experiments. Our optical investigation provides deeper insights into the nature of the exciton fine structures and thereby drives the yet-incomplete understanding of the unique photophysical properties of this class of QDs for the benefit of future applications in chiral quantum optics.