JS
Jay Slowik
Author with expertise in Health Effects of Air Pollution
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(83% Open Access)
Cited by:
11,149
h-index:
73
/
i10-index:
177
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Single‐particle measurements of midlatitude black carbon and light‐scattering aerosols from the boundary layer to the lower stratosphere

J. Schwarz et al.Aug 27, 2006
A single‐particle soot photometer (SP2) was flown on a NASA WB‐57F high‐altitude research aircraft in November 2004 from Houston, Texas. The SP2 uses laser‐induced incandescence to detect individual black carbon (BC) particles in an air sample in the mass range of ∼3–300 fg (∼0.15–0.7 μm volume equivalent diameter). Scattered light is used to size the remaining non‐BC aerosols in the range of ∼0.17–0.7 μm diameter. We present profiles of both aerosol types from the boundary layer to the lower stratosphere from two midlatitude flights. Results for total aerosol amounts in the size range detected by the SP2 are in good agreement with typical particle spectrometer measurements in the same region. All ambient incandescing particles were identified as BC because their incandescence properties matched those of laboratory‐generated BC aerosol. Approximately 40% of these BC particles showed evidence of internal mixing (e.g., coating). Throughout profiles between 5 and 18.7 km, BC particles were less than a few percent of total aerosol number, and black carbon aerosol (BCA) mass mixing ratio showed a constant gradient with altitude above 5 km. SP2 data was compared to results from the ECHAM4/MADE and LmDzT‐INCA global aerosol models. The comparison will help resolve the important systematic differences in model aerosol processes that determine BCA loadings. Further intercomparisons of models and measurements as presented here will improve the accuracy of the radiative forcing contribution from BCA.
0
Paper
Citation822
0
Save
0

Particulate matter, air quality and climate: lessons learned and future needs

S. Fuzzi et al.Jul 24, 2015
Abstract. The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500–2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate–aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we still do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 °C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China and the USA. Thus, there is much that could be done to reduce the effects of atmospheric PM on the climate and the health of the environment and the human population. A prioritized list of actions to mitigate the full range of effects of PM is currently undeliverable due to shortcomings in the knowledge of aerosol science; among the shortcomings, the roles of PM in global climate and the relative roles of different PM precursor sources and their response to climate and land use change over the remaining decades of this century are prominent. In any case, the evidence from this paper strongly advocates for an integrated approach to air quality and climate policies.
0
Paper
Citation747
0
Save
0

SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data

Francesco Canonaco et al.Dec 23, 2013
Abstract. Source apportionment using the bilinear model through a multilinear engine (ME-2) was successfully applied to non-refractory organic aerosol (OA) mass spectra collected during the winter of 2011 and 2012 in Zurich, Switzerland using the aerosol chemical speciation monitor (ACSM). Five factors were identified: low-volatility oxygenated OA (LV-OOA), semivolatile oxygenated OA (SV-OOA), hydrocarbon-like OA (HOA), cooking OA (COA) and biomass burning OA (BBOA). A graphical user interface SoFi (Source Finder) was developed at PSI in order to facilitate the testing of different rotational techniques available within the ME-2 engine by providing a priori factor profiles for some or all of the expected factors. ME-2 was used to test the positive matrix factorization (PMF) model, the fully constrained chemical mass balance (CMB) model, and partially constrained models utilizing a values and pulling equations. Within the set of model solutions determined to be environmentally reasonable, BBOA and SV-OOA factor mass spectra and time series showed the greatest variability. This variability represents the uncertainty in the model solution and indicates that analysis of model rotations provides a useful approach for assessing the uncertainty of bilinear source apportionment models.
0
Paper
Citation594
0
Save
0

Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data

Claudia Mohr et al.Feb 15, 2012
Abstract. PM1 (particulate matter with an aerodynamic diameter <1 μm) non-refractory components and black carbon were measured continuously together with additional air quality and atmospheric parameters at an urban background site in Barcelona, Spain, during March 2009 (campaign DAURE, Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). Positive matrix factorization (PMF) was conducted on the organic aerosol (OA) data matrix measured by an aerosol mass spectrometer, on both unit mass (UMR) and high resolution (HR) data. Five factors or sources could be identified: LV-OOA (low-volatility oxygenated OA), related to regional, aged secondary OA; SV-OOA (semi-volatile oxygenated OA), a fresher oxygenated OA; HOA (hydrocarbon-like OA, related to traffic emissions); BBOA (biomass burning OA) from domestic heating or agricultural biomass burning activities; and COA (cooking OA). LV-OOA contributed 28% to OA, SV-OOA 27%, COA 17%, HOA 16%, and BBOA 11%. The COA HR spectrum contained substantial signal from oxygenated ions (O:C: 0.21) whereas the HR HOA spectrum had almost exclusively contributions from chemically reduced ions (O:C: 0.03). If we assume that the carbon in HOA is fossil while that in COA and BBOA is modern, primary OA in Barcelona contains a surprisingly high fraction (59%) of non-fossil carbon. This paper presents a method for estimating cooking organic aerosol in ambient datasets based on the fractions of organic mass fragments at m/z 55 and 57: their data points fall into a V-shape in a scatter plot, with strongly influenced HOA data aligned to the right arm and strongly influenced COA data points aligned to the left arm. HR data show that this differentiation is mainly driven by the oxygen-containing ions C3H3O+ and C3H5O+, even though their contributions to m/z 55 and 57 are low compared to the reduced ions C4H7+ and C4H9+. A simple estimation method based on the markers m/z 55, 57, and 44 is developed here and allows for a first-order-estimation of COA in urban air. This study emphasizes the importance of cooking activities for ambient air quality and confirms the importance of chemical composition measurements with a high mass and time resolution.
0
Paper
Citation512
0
Save
0

Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations

Ilona Riipinen et al.Apr 27, 2011
Abstract. Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles – highlighting the need for representing this process in global climate models.
0
Paper
Citation449
0
Save
0

Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris

Monica Crippa et al.Jan 23, 2013
Abstract. The effect of a post-industrial megacity on local and regional air quality was assessed via a month-long field measurement campaign in the Paris metropolitan area during winter 2010. Here we present source apportionment results from three aerosol mass spectrometers and two aethalometers deployed at three measurement stations within the Paris region. Submicron aerosol composition is dominated by the organic fraction (30–36%) and nitrate (28–29%), with lower contributions from sulfate (14–16%), ammonium (12–14%) and black carbon (7–13%). Organic source apportionment was performed using positive matrix factorization, resulting in a set of organic factors corresponding both to primary emission sources and secondary production. The dominant primary sources are traffic (11–15% of organic mass), biomass burning (13–15%) and cooking (up to 35% during meal hours). Secondary organic aerosol contributes more than 50% to the total organic mass and includes a highly oxidized factor from indeterminate and/or diverse sources and a less oxidized factor related to wood burning emissions. Black carbon was apportioned to traffic and wood burning sources using a model based on wavelength-dependent light absorption of these two combustion sources. The time series of organic and black carbon factors from related sources were strongly correlated. The similarities in aerosol composition, total mass and temporal variation between the three sites suggest that particulate pollution in Paris is dominated by regional factors, and that the emissions from Paris itself have a relatively low impact on its surroundings.
0
Paper
Citation444
0
Save
0

New insights into PM&lt;sub&gt;2.5&lt;/sub&gt; chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry

Miriam Elser et al.Mar 11, 2016
Abstract. During winter 2013–2014 aerosol mass spectrometer (AMS) measurements were conducted for the first time with a novel PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 µm) lens in two major cities of China: Xi'an and Beijing. We denote the periods with visibility below 2 km as extreme haze and refer to the rest as reference periods. During the measurements in Xi'an an extreme haze covered the city for about a week and the total non-refractory (NR)-PM2.5 mass fraction reached peak concentrations of over 1000 µg m−3. During the measurements in Beijing two extreme haze events occurred, but the temporal extent and the total concentrations reached during these events were lower than in Xi'an. Average PM2.5 concentrations of 537 ± 146 and 243 ± 47 µg m−3 (including NR species and equivalent black carbon, eBC) were recorded during the extreme haze events in Xi'an and Beijing, respectively. During the reference periods the measured average concentrations were 140 ± 99 µg m−3 in Xi'an and 75 ± 61 µg m−3 in Beijing. The relative composition of the NR-PM2.5 evolved substantially during the extreme haze periods, with increased contributions of the inorganic components (mostly sulfate and nitrate). Our results suggest that the high relative humidity present during the extreme haze events had a strong effect on the increase of sulfate mass (via aqueous phase oxidation of sulfur dioxide). Another relevant characteristic of the extreme haze is the size of the measured particles. During the extreme haze events, the AMS showed much larger particles, with a volume weighted mode at about 800 to 1000 nm, in contrast to about 400 nm during reference periods. These large particle sizes made the use of the PM2.5 inlet crucial, especially during the severe haze events, where 39 ± 5 % of the mass would have been lost in the conventional PM1 (particulate matter with aerodynamic diameter ≤ 1 µm) inlet. A novel positive matrix factorization procedure was developed to apportion the sources of organic aerosols (OA) based on their mass spectra using the multilinear engine (ME-2) controlled via the source finder (SoFi). The procedure allows for an effective exploration of the solution space, a more objective selection of the best solution and an estimation of the rotational uncertainties. Our results clearly show an increase of the oxygenated organic aerosol (OOA) mass during extreme haze events. The contribution of OOA to the total OA increased from the reference to the extreme haze periods from 16.2 ± 1.1 to 31.3 ± 1.5 % in Xi'an and from 15.7 ± 0.7 to 25.0 ± 1.2 % in Beijing. By contrast, during the reference periods the total OA mass was dominated by domestic emissions of primary aerosols from biomass burning in Xi'an (42.2 ± 1.5 % of OA) and coal combustion in Beijing (55.2 ± 1.6 % of OA). These two sources are also mostly responsible for extremely high polycyclic aromatic hydrocarbon (PAH) concentrations measured with the AMS (campaign average of 2.1 ± 2.0 µg m−3 and frequent peak concentrations above 10 µg m−3). To the best of our knowledge, this is the first data set where the simultaneous extraction of these two primary sources could be achieved in China by conducting on-line AMS measurements at two areas with contrasted emission patterns.
0
Paper
Citation357
0
Save
0

Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements

Andrew Lambe et al.Mar 4, 2011
Abstract. Motivated by the need to develop instrumental techniques for characterizing organic aerosol aging, we report on the performance of the Toronto Photo-Oxidation Tube (TPOT) and Potential Aerosol Mass (PAM) flow tube reactors under a variety of experimental conditions. The PAM system was designed with lower surface-area-to-volume (SA/V) ratio to minimize wall effects; the TPOT reactor was designed to study heterogeneous aerosol chemistry where wall loss can be independently measured. The following studies were performed: (1) transmission efficiency measurements for CO2, SO2, and bis(2-ethylhexyl) sebacate (BES) particles, (2) H2SO4 yield measurements from the oxidation of SO2, (3) residence time distribution (RTD) measurements for CO2, SO2, and BES particles, (4) aerosol mass spectra, O/C and H/C ratios, and cloud condensation nuclei (CCN) activity measurements of BES particles exposed to OH radicals, and (5) aerosol mass spectra, O/C and H/C ratios, CCN activity, and yield measurements of secondary organic aerosol (SOA) generated from gas-phase OH oxidation of m-xylene and α-pinene. OH exposures ranged from (2.0 ± 1.0) × 1010 to (1.8 ± 0.3) × 1012 molec cm−3 s. Where applicable, data from the flow tube reactors are compared with published results from the Caltech smog chamber. The TPOT yielded narrower RTDs. However, its transmission efficiency for SO2 was lower than that for the PAM. Transmission efficiency for BES and H2SO4 particles was size-dependent and was similar for the two flow tube designs. Oxidized BES particles had similar O/C and H/C ratios and CCN activity at OH exposures greater than 1011 molec cm−3 s, but different CCN activity at lower OH exposures. The O/C ratio, H/C ratio, and yield of m-xylene and α-pinene SOA was strongly affected by reactor design and operating conditions, with wall interactions seemingly having the strongest influence on SOA yield. At comparable OH exposures, flow tube SOA was more oxidized than smog chamber SOA, possibly because of faster gas-phase oxidation relative to particle nucleation. SOA yields were lower in the TPOT than in the PAM, but CCN activity of flow-tube-generated SOA particles was similar. For comparable OH exposures, α-pinene SOA yields were similar in the PAM and Caltech chambers, but m-xylene SOA yields were much lower in the PAM compared to the Caltech chamber.
0

A Novel Method for Estimating Light-Scattering Properties of Soot Aerosols Using a Modified Single-Particle Soot Photometer

R. Gao et al.Feb 1, 2007
A Single-Particle Soot Photometer (SP2) detects black refractory or elemental carbon (EC) in particles by passing them through an intense laser beam. The laser light heats EC in particles causing them to vaporize in the beam. Detection of wavelength-resolved thermal radiation emissions provides quantitative information on the EC mass of individual particles in the size range of 0.2–1 μm diameter. Non-absorbing particles are sized based on the amount of light they scatter from the laser beam. The time series of the scattering signal of a non-absorbing particle is a Gaussian, because the SP2 laser is in the TEM00 mode. Information on the scattering properties of externally and internally mixed EC particles as detected by the SP2 is lost in general, because each particle changes size, shape, and composition as it passes through the laser beam. Thus, scattered light from a sampled EC particle does not yield a full Gaussian waveform. A method for determining the scattering properties of EC particles using a two-element avalanche photodiode (APD) is described here. In this method, the Gaussian scattering function is constructed from the leading edge of the scattering signal (before the particle is perturbed by the laser), the Gaussian width, and the location of the leading edge in the beam derived from the two-element APD signal. The method allows an SP2 to determine the scattering properties of individual EC particles as well as the EC mass. Detection of polystyrene latex spheres, well-characterized EC particles with and without organic coatings, and Mie scattering calculations are used to validate the method.
0
Paper
Citation343
0
Save
Load More