ES
Ehsan Samei
Author with expertise in Dual-Energy Computed Tomography
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(38% Open Access)
Cited by:
2,567
h-index:
65
/
i10-index:
270
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A method for measuring the presampled MTF of digital radiographic systems using an edge test device

Ehsan Samei et al.Jan 1, 1998
The modulation transfer function (MTF) of radiographic systems is frequently evaluated by measuring the system's line spread function (LSF) using narrow slits. The slit method requires precise fabrication and alignment of a slit and high radiation exposure. An alternative method for determining the MTF uses a sharp, attenuating edge device. We have constructed an edge device from a 250‐μm‐thick lead foil laminated between two thin slabs of acrylic. The device is placed near the detector and aligned with the aid of a laser beam and a holder such that a polished edge is parallel to the x‐ray beam. A digital image of the edge is processed to obtain the presampled MTF. The image processing includes automated determination of the edge angle, reprojection, sub‐binning, smoothing of the edge spread function (ESF), and spectral estimation. This edge method has been compared to the slit method using measurements on standard and high‐resolution imaging plates of a digital storage phosphor (DSP) radiography system. The experimental results for both methods agree with a mean MTF difference of 0.008. The edge method provides a convenient measurement of the presampled MTF for digital radiographic systems with good response at low frequencies.
0

Low-Tube-Voltage, High-Tube-Current Multidetector Abdominal CT: Improved Image Quality and Decreased Radiation Dose with Adaptive Statistical Iterative Reconstruction Algorithm—Initial Clinical Experience

Daniele Marin et al.Dec 23, 2009
To investigate whether an adaptive statistical iterative reconstruction (ASIR) algorithm improves the image quality at low-tube-voltage (80-kVp), high-tube-current (675-mA) multidetector abdominal computed tomography (CT) during the late hepatic arterial phase.This prospective, single-center HIPAA-compliant study was institutional review board approved. Informed patient consent was obtained. Ten patients (six men, four women; mean age, 63 years; age range, 51-77 years) known or suspected to have hypervascular liver tumors underwent dual-energy 64-section multidetector CT. High- and low-tube-voltage CT images were acquired sequentially during the late hepatic arterial phase of contrast enhancement. Standard convolution FBP was used to reconstruct 140-kVp (protocol A) and 80-kVp (protocol B) image sets, and ASIR (protocol C) was used to reconstruct 80-kVp image sets. The mean image noise; contrast-to-noise ratio (CNR) relative to muscle for the aorta, liver, and pancreas; and effective dose with each protocol were assessed. A figure of merit (FOM) was computed to normalize the image noise and CNR for each protocol to effective dose. Repeated-measures analysis of variance with Bonferroni adjustment for multiple comparisons was used to compare differences in mean CNR, image noise, and corresponding FOM among the three protocols. The noise power spectra generated from a custom phantom with each protocol were also compared.When image noise was normalized to effective dose, protocol C, as compared with protocols A (P = .0002) and B (P = .0001), yielded an approximately twofold reduction in noise. When the CNR was normalized to effective dose, protocol C yielded significantly higher CNRs for the aorta, liver, and pancreas than did protocol A (P = .0001 for all comparisons) and a significantly higher CNR for the liver than did protocol B (P = .003). Mean effective doses were 17.5 mSv +/- 0.6 (standard error) with protocol A and 5.1 mSv +/- 0.3 with protocols B and C. Compared with protocols A and B, protocol C yielded a small but quantifiable noise reduction across the entire spectrum of spatial frequencies.Compared with standard FBP reconstruction, an ASIR algorithm improves image quality and has the potential to decrease radiation dose at low-tube-voltage, high-tube-current multidetector abdominal CT during the late hepatic arterial phase.
0

Assessment of display performance for medical imaging systems: Executive summary of AAPM TG18 report

Ehsan Samei et al.Apr 1, 2005
Digital imaging provides an effective means to electronically acquire, archive, distribute, and view medical images. Medical imaging display stations are an integral part of these operations. Therefore, it is vitally important to assure that electronic display devices do not compromise image quality and ultimately patient care. The AAPM Task Group 18 (TG18) recently published guidelines and acceptance criteria for acceptance testing and quality control of medical display devices. This paper is an executive summary of the TG18 report. TG18 guidelines include visual, quantitative, and advanced testing methodologies for primary and secondary class display devices. The characteristics, tested in conjunction with specially designed test patterns (i.e., TG18 patterns), include reflection, geometric distortion, luminance, the spatial and angular dependencies of luminance, resolution, noise, glare, chromaticity, and display artifacts. Geometric distortions are evaluated by linear measurements of the TG18-QC test pattern, which should render distortion coefficients less than 2%/5% for primary/secondary displays, respectively. Reflection measurements include specular and diffuse reflection coefficients from which the maximum allowable ambient lighting is determined such that contrast degradation due to display reflection remains below a 20% limit and the level of ambient luminance (Lamb) does not unduly compromise luminance ratio (LR) and contrast at low luminance levels. Luminance evaluation relies on visual assessment of low contrast features in the TG18-CT and TG18-MP test patterns, or quantitative measurements at 18 distinct luminance levels of the TG18-LN test patterns. The major acceptable criteria for primary/ secondary displays are maximum luminance of greater than 170/100 cd/m2, LR of greater than 250/100, and contrast conformance to that of the grayscale standard display function (GSDF) of better than 10%/20%, respectively. The angular response is tested to ascertain the viewing cone within which contrast conformance to the GSDF is better than 30%/60% and LR is greater than 175/70 for primary/secondary displays, or alternatively, within which the on-axis contrast thresholds of the TG18-CT test pattern remain discernible. The evaluation of luminance spatial uniformity at two distinct luminance levels across the display faceplate using TG18-UNL test patterns should yield nonuniformity coefficients smaller than 30%. The resolution evaluation includes the visual scoring of the CX test target in the TG18-QC or TG18-CX test patterns, which should yield scores greater than 4/6 for primary/secondary displays. Noise evaluation includes visual evaluation of the contrast threshold in the TG18-AFC test pattern, which should yield a minimum of 3/2 targets visible for primary/secondary displays. The guidelines also include methodologies for more quantitative resolution and noise measurements based on MTF and NPS analyses. The display glare test, based on the visibility of the low-contrast targets of the TG18-GV test pattern or the measurement of the glare ratio (GR), is expected to yield scores greater than 3/1 and GRs greater than 400/150 for primary/secondary displays. Chromaticity, measured across a display faceplate or between two display devices, is expected to render a u',v' color separation of less than 0.01 for primary displays. The report offers further descriptions of prior standardization efforts, current display technologies, testing prerequisites, streamlined procedures and timelines, and TG18 test patterns.
0

Towards task-based assessment of CT performance: System and object MTF across different reconstruction algorithms

Samuel Richard et al.Jun 11, 2012
To investigate a measurement method for evaluating the resolution properties of CT imaging systems across reconstruction algorithms, dose, and contrast.An algorithm was developed to extract the task-based modulation transfer function (MTF) from disk images generated from the rod inserts in the ACR phantom (model 464 Gammex, WI). These inserts are conventionally employed for HU accuracy assessment. The edge of the disk objects was analyzed to determine the edge-spread function, which was differentiated to yield the line-spread function and Fourier-transformed to generate the object-specific MTF for task-based assessment, denoted MTF(Task). The proposed MTF measurement method was validated against the conventional wire technique and further applied to measure the MTF of CT images reconstructed with an adaptive statistical iterative algorithm (ASIR) and a model-based iterative (MBIR) algorithm. Results were further compared to the standard filtered back projection (FBP) algorithm. Measurements were performed and compared across different doses and contrast levels to ascertain the MTF(Task) dependencies on those factors.For the FBP reconstructed images, the MTF(Task) measured with the inserts were the same as the MTF measured from the wire-based method. For the ASIR and MBIR data, the MTF(Task) using the high contrast insert was similar to the wire-based MTF and equal or superior to that of FBP. However, results for the MTF(Task) measured using the low-contrast inserts, the MTF(Task) for ASIR and MBIR data was lower than for the FBP, which was constant throughout all measurements. Similarly, as a function of mA, the MTF(Task) for ASIR and MBIR varied as a function of noise--with MTF(Task) being proportional to mA. Overall greater variability of MTF(Task) across dose and contrast was observed for MBIR than for ASIR.This approach provides a method for assessing the task-based MTF of a CT system using conventional and iterative reconstructions. Results demonstrated that the object-specific MTF can vary as a function of dose and contrast. The analysis highlighted the paradigm shift for iterative reconstructions when compared to FBP, where iterative reconstructions generally offer superior noise performance but with varying resolution as a function of dose and contrast. The MTF(Task) generated by this method is expected to provide a more comprehensive assessment of image resolution across different reconstruction algorithms and imaging tasks.
0

Achieving Routine Submillisievert CT Scanning: Report from the Summit on Management of Radiation Dose in CT

Cynthia McCollough et al.Jun 13, 2012
This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation.
0

Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings

Mathias Meyer et al.Oct 1, 2019
Background Results of recent phantom studies show that variation in CT acquisition parameters and reconstruction techniques may make radiomic features largely nonreproduceable and of limited use for prognostic clinical studies. Purpose To investigate the effect of CT radiation dose and reconstruction settings on the reproducibility of radiomic features, as well as to identify correction factors for mitigating these sources of variability. Materials and Methods This was a secondary analysis of a prospective study of metastatic liver lesions in patients who underwent staging with single-energy dual-source contrast material–enhanced staging CT between September 2011 and April 2012. Technique parameters were altered, resulting in 28 CT data sets per patient that included different dose levels, section thicknesses, kernels, and reconstruction algorithm settings. By using a training data set (n = 76), reproducible intensity, shape, and texture radiomic features (reproducibility threshold, R2 ≥ 0.95) were selected and correction factors were calculated by using a linear model to convert each radiomic feature to its estimated value in a reference technique. By using a test data set (n = 75), the reproducibility of hierarchical clustering based on 106 radiomic features measured with different CT techniques was assessed. Results Data in 78 patients (mean age, 60 years ± 10; 33 women) with 151 liver lesions were included. The percentage of radiomic features deemed reproducible for any variation of the different technical parameters was 11% (12 of 106). Of all technical parameters, reconstructed section thickness had the largest impact on the reproducibility of radiomic features (12.3% [13 of 106]) if only one technical parameter was changed while all other technical parameters were kept constant. The results of the hierarchical cluster analysis showed improved clustering reproducibility when reproducible radiomic features with dedicated correction factors were used (ρ = 0.39–0.71 vs ρ = 0.14–0.47). Conclusion Most radiomic features are highly affected by CT acquisition and reconstruction settings, to the point of being nonreproducible. Selecting reproducible radiomic features along with study-specific correction factors offers improved clustering reproducibility. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Sosna in this issue.
0
Citation203
0
Save
0

Performance evaluation of computed tomography systems: Summary of AAPM Task Group 233

Ehsan Samei et al.Aug 13, 2019
The rapid development and complexity of new x-ray computed tomography (CT) technologies and the need for evidence-based optimization of image quality with respect to radiation and contrast media dose call for an updated approach towards CT performance evaluation.This report offers updated testing guidelines for testing CT systems with an enhanced focus on the operational performance including iterative reconstructions and automatic exposure control (AEC) techniques.The report was developed based on a comprehensive review of best methods and practices in the scientific literature. The detailed methods include the assessment of 1) CT noise (magnitude, texture, nonuniformity, inhomogeneity), 2) resolution (task transfer function under varying conditions and its scalar reflections), 3) task-based performance (detectability, estimability), and 4) AEC performance (spatial, noise, and mA concordance of attenuation and exposure modulation). The methods include varying reconstruction and tube current modulation conditions, standardized testing protocols, and standardized quantities and metrology to facilitate tracking, benchmarking, and quantitative comparisons.The methods, implemented in cited publications, are robust to provide a representative reflection of CT system performance as used operationally in a clinical facility. The methods include recommendations for phantoms and phantom image analysis.In line with the current professional trajectory of the field toward quantitation and operational engagement, the stated methods offer quantitation that is more predictive of clinical performance than specification-based approaches. They can pave the way to approach performance testing of new CT systems not only in terms of acceptance testing (i.e., verifying a device meets predefined specifications), but also system commissioning (i.e., determining how the system can be used most effectively in clinical practice).We offer a set of common testing procedures that can be utilized towards the optimal clinical utilization of CT imaging devices, benchmarking across varying systems and times, and a basis to develop future performance-based criteria for CT imaging.
0

AAPM Truth‐based CT (TrueCT) reconstruction grand challenge

Ehsan Abadi et al.Jan 14, 2025
This Special Report summarizes the 2022, AAPM grand challenge on Truth-based CT image reconstruction. To provide an objective framework for evaluating CT reconstruction methods using virtual imaging resources consisting of a library of simulated CT projection images of a population of human models with various diseases. Two hundred unique anthropomorphic, computational models were created with varied diseases consisting of 67 emphysema, 67 lung lesions, and 66 liver lesions. The organs were modeled based on clinical CT images of real patients. The emphysematous regions were modeled using segmentations from patient CT cases in the COPDGene Phase I dataset. For the lung and liver lesion cases, 1-6 malignant lesions were created and inserted into the human models, with lesion diameters ranging from 5.6 to 21.9 mm for lung lesions and 3.9 to 14.9 mm for liver lesions. The contrast defined between the liver lesions and liver parenchyma was 82 ± 12 HU, ranging from 50 to 110 HU. Similarly, the contrast between the lung lesions and the lung parenchyma was defined as 781 ± 11 HU, ranging from 725 to 805 HU. For the emphysematous regions, the defined HU values were -950 ± 17 HU ranging from -918 to -979 HU. The developed human models were imaged with a validated CT simulator. The resulting CT sinograms were shared with the participants. The participants reconstructed CT images from the sinograms and sent back their reconstructed images. The reconstructed images were then scored by comparing the results against the corresponding ground truth values. The scores included both task-generic (root mean square error [RMSE] and structural similarity matrix [SSIM]), and task-specific (detectability index [d'] and lesion volume accuracy) metrics. For the cases with multiple lesions, the measured metric was averaged across all the lesions. To combine the metrics with each other, each metric was normalized to a range of 0 to 1 per disease type, with "0" and "1" being the worst and best measured values across all cases of the disease type for all received reconstructions. The True-CT challenge attracted 52 participants, out of which 5 successfully completed the challenge and submitted the requested 200 reconstructions. Across all participants and disease types, SSIM absolute values ranged from 0.22 to 0.90, RMSE from 77.6 to 490.5 HU, d' from 0.1 to 64.6, and volume accuracy ranged from 1.2 to 753.1 mm3. The overall scores demonstrated that participant "A" had the best performance in all categories, except for the metrics of d' for lung lesions and RMSE for liver lesions. Participant "A" had an average normalized score of 0.41 ± 0.22, 0.48 ± 0.32, and 0.42 ± 0.33 for the emphysema, lung lesion, and liver lesion cases, respectively. The True-CT challenge successfully enabled objective assessment of CT reconstructions with the unique advantage of access to a diverse population of diseased human models with known ground truth. This study highlights the significant potential of virtual imaging trials in objective assessment of medical imaging technologies.
0

Estimation of threshold thickness of residual normal tissue in lung dysfunction detectable by dynamic chest radiography: A virtual imaging trial

Shunya Yamaguchi et al.Jun 25, 2024
Abstract Background Dynamic chest radiography (DCR) is a recently developed functional x‐ray imaging technique that detects pulmonary ventilation impairment as a decrease in changes in lung density during respiration. However, the diagnostic performance of DCR is uncertain owing to an insufficient number of clinical cases. One solution is virtual imaging trials (VITs), which is an emerging alternative method for efficiently evaluating medical imaging technology via computer simulation techniques. Purpose This study aimed to estimate the typical threshold thickness of residual normal tissue below which the presence of emphysema may be detected by DCR via VITs using virtual patients with different physiques and a user‐defined ground truth. Methods Twenty extended cardiac‐torso (XCAT) phantoms that exhibited changes in lung density during respiration were generated to simulate virtual patients. To simulate a locally collapsed lung, an air sphere was inserted into each lung regions in the phantom. The XCAT phantom was virtually projected using an x‐ray simulator. The respiratory changes in pixel value (ΔPV) were measured on the projected air spheres (simulated lesions) to calculate the percentage of decrease (ΔPV%) relative to ΔPV exp‐ins in the absence of an air sphere. The relationship between the amount of residual normal tissue and ΔPV% was fitted to a cubic approximation curve (hereafter, performance curve), and the threshold at which the ΔPV% began to decrease (normal‐tissue thre ) was determined. The goodness of fit for each performance curve was evaluated according to the coefficient of determination ( R 2 ) and the 95% confidence interval derived from the standard errors between the measured and theoretical values corresponding to each performance curve. The ΔPV% was also visualized as a color scaling to validate the results of the VITs in both virtual and clinical patients. Results For each lung region in all body sizes, the ΔPV% decreased as the amount of residual normal tissue decreased and could be defined as a function of the amount of residual normal tissue in front of and behind the simulated lesions with high R 2 values. Meanwhile, the difference between the measured and theoretical values corresponding to each performance curve was only partially included in the 95% confidence interval. The normal‐tissue thre values were 146.0, 179.5, and 170.9 mm for the upper, middle, and lower lungs, respectively, which were demonstrated in virtual patients and one real patient, where the value of the residual normal tissue was less than that of normal‐tissue thre ; any reduction in the residual normal tissue was reflected as a reduced ΔPV and depicted as a reduced color intensity. Conclusions The performance of DCR‐based pulmonary impairment assessment depends on the amount of residual normal tissue in front of and behind the lesion rather than on the lesion size. The performance curve can be defined as a function of the amount of residual normal tissue in each lung region with a specific threshold of normal tissue remaining where lesions become detectable, shown as a decrease in ΔPV. The results of VITs are expected to accelerate future clinical trials for DCR‐based pulmonary function assessment.
Load More