ZD
Zhicheng Dou
Author with expertise in Recommender System Technologies
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(36% Open Access)
Cited by:
528
h-index:
28
/
i10-index:
72
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A large-scale evaluation and analysis of personalized search strategies

Zhicheng Dou et al.May 8, 2007
Although personalized search has been proposed for many years and many personalization strategies have been investigated, it is still unclear whether personalization is consistently effective on different queries for different users, and under different search contexts. In this paper, we study this problem and get some preliminary conclusions. We present a large-scale evaluation framework for personalized search based on query logs, and then evaluate five personalized search strategies (including two click-based and three profile-based ones) using 12-day MSN query logs. By analyzing the results, we reveal that personalized search has significant improvement over common web search on some queries but it also has little effect on other queries (e.g., queries with small click entropy). It even harms search accuracy under some situations. Furthermore, we show that straightforward click-based personalization strategies perform consistently and considerably well, while profile-based ones are unstable in our experiments. We also reveal that both long-term and short-term contexts are very important in improving search performance for profile-based personalized search strategies.
0

User Behavior Simulation with Large Language Model-based Agents for Recommender Systems

Lei Wang et al.Dec 20, 2024
Simulating high quality user behavior data has always been a fundamental yet challenging problem in human-centered applications such as recommendation systems, social networks, among many others. The major difficulty of user behavior simulation originates from the intricate mechanism of human cognitive and decision processes. Recently, substantial evidence have suggested that by learning huge amounts of web knowledge, large language models (LLMs) can achieve human-like intelligence and generalization capabilities. Inspired by such capabilities, in this paper, we take an initial step to study the potential of using LLMs for user behavior simulation in the recommendation domain. To make LLMs act like humans, we design profile, memory and action modules to equip them, building LLM-based agents to simulate real users. To enable interactions between different agents and observe their behavior patterns, we design a sandbox environment, where each agent can interact with the recommendation system, and different agents can converse with their friends via one-to-one chatting or one-to-many social broadcasting. In the experiments, we first demonstrate the believability of the agent-generated behaviors based on both subjective and objective evaluations. Then, to show the potential applications of our method, we simulate and study two social phenomenons including (1) information cocoons and (2) user conformity behaviors. We find that controlling the personalization degree of recommendation algorithms and improving the heterogeneity of user social relations can be two effective strategies for alleviating the problem of information cocoon, and the conformity behaviors can be highly influenced by the amount of user social relations. To advance this direction, we have released our project at https://github.com/RUC-GSAI/YuLan-Rec .
0

ROGER: Ranking-oriented Generative Retrieval

Yujia Zhou et al.Jun 3, 2024
In recent years, various dense retrieval methods have been developed to improve the performance of search engines with a vectorized index. However, these approaches require a large pre-computed index and have limited capacity to memorize all semantics in a document within a single vector. To address these issues, researchers have explored end-to-end generative retrieval models that use a seq-to-seq generative model to directly return identifiers of relevant documents. Although these models have been effective, they are often trained with the maximum likelihood estimation method. It only encourages the model to assign a high probability to the relevant document identifier, ignoring the relevance comparisons of other documents. This may lead to performance degradation in ranking tasks, where the core is to compare the relevance between documents. To address this issue, we propose a ranking-oriented generative retrieval model that incorporates relevance signals in order to better estimate the relative relevance of different documents in ranking tasks. Based upon the analysis of the optimization objectives of dense retrieval and generative retrieval, we propose utilizing dense retrieval to provide relevance feedback for generative retrieval. Under an alternate training framework, the generative retrieval model gradually acquires higher-quality ranking signals to optimize the model. Experimental results show that our approach increasing Recall@1 by 12.9% with respect to the baselines on MS MARCO dataset.
0

Enhancing Multi-field B2B Cloud Solution Matching via Contrastive Pre-training

Haonan Chen et al.Aug 24, 2024
Cloud solutions have gained significant popularity in the technology industry as they offer a combination of services and tools to tackle specific problems. However, despite their widespread use, the task of identifying appropriate company customers for a specific target solution to the sales team of a solution provider remains a complex business problem that existing matching systems have yet to adequately address. In this work, we study the B2B solution matching problem and identify two main challenges of this scenario: (1) the modeling of complex multi-field features and (2) the limited, incomplete, and sparse transaction data. To tackle these challenges, we propose a framework CAMA, which is built with a hierarchical multi-field matching structure as its backbone and supplemented by three data augmentation strategies and a contrastive pre-training objective to compensate for the imperfections in the available data. Through extensive experiments on a real-world dataset, we demonstrate that CAMA outperforms several strong baseline matching models significantly. Furthermore, we have deployed our matching framework on a system of Huawei Cloud. Our observations indicate an improvement of about 30% compared to the previous online model in terms of Conversion Rate (CVR), which demonstrates its great business value.
Load More