SM
S. Manimurugan
Author with expertise in Network Intrusion Detection and Defense Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
215
h-index:
18
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Effective Attack Detection in Internet of Medical Things Smart Environment Using a Deep Belief Neural Network

S. Manimurugan et al.Jan 1, 2020
The Internet of Things (IoT) has lately developed into an innovation for developing smart environments. Security and privacy are viewed as main problems in any technology's dependence on the IoT model. Privacy and security issues arise due to the different possible attacks caused by intruders. Thus, there is an essential need to develop an intrusion detection system for attack and anomaly identification in the IoT system. In this work, we have proposed a deep learning-based method Deep Belief Network (DBN) algorithm model for the intrusion detection system. Regarding the attacks and anomaly detection, the CICIDS 2017 dataset is utilized for the performance analysis of the present IDS model. The proposed method produced better results in all the parameters in relation to accuracy, recall, precision, F1-score, and detection rate. The proposed method has achieved 99.37% accuracy for normal class, 97.93% for Botnet class, 97.71% for Brute Force class, 96.67% for Dos/DDoS class, 96.37% for Infiltration class, 97.71% for Ports can class and 98.37% for Web attack, and these results were compared with various classifiers as shown in the results.
0

A hybrid Bi-LSTM and RBM approach for advanced underwater object detection

S. Manimurugan et al.Nov 22, 2024
This research addresses the imperative need for efficient underwater exploration in the domain of deep-sea resource development, highlighting the importance of autonomous operations to mitigate the challenges posed by high-stress underwater environments. The proposed approach introduces a hybrid model for Underwater Object Detection (UOD), combining Bi-directional Long Short-Term Memory (Bi-LSTM) with a Restricted Boltzmann Machine (RBM). Bi-LSTM excels at capturing long-term dependencies and processing sequences bidirectionally to enhance comprehension of both past and future contexts. The model benefits from effective feature learning, aided by RBMs that enable the extraction of hierarchical and abstract representations. Additionally, this architecture handles variable-length sequences, mitigates the vanishing gradient problem, and achieves enhanced significance by capturing complex patterns in the data. Comprehensive evaluations on brackish, and URPC 2020 datasets demonstrate superior performance, with the BiLSTM-RBM model showcasing notable accuracies, such as big fish 98.5 for the big fish object in the brackish dataset and 98 for the star fish object in the URPC dataset. Overall, these findings underscore the BiLSTM-RBM model’s suitability for UOD, positioning it as a robust solution for effective underwater object detection in challenging underwater environments.
0

Protecting digital assets using an ontology based cyber situational awareness system

Tariq Almoabady et al.Jan 9, 2025
Introduction Cyber situational awareness is critical for detecting and mitigating cybersecurity threats in real-time. This study introduces a comprehensive methodology that integrates the Isolation Forest and autoencoder algorithms, Structured Threat Information Expression (STIX) implementation, and ontology development to enhance cybersecurity threat detection and intelligence. The Isolation Forest algorithm excels in anomaly detection in high-dimensional datasets, while autoencoders provide nonlinear detection capabilities and adaptive feature learning. Together, they form a robust framework for proactive anomaly detection. Methods The proposed methodology leverages the Isolation Forest for efficient anomaly identification and autoencoders for feature learning and nonlinear anomaly detection. Threat information was standardized using the STIX framework, facilitating structured and dynamic assessment of threat intelligence. Ontology development was employed to represent knowledge systematically and enable semantic correlation of threats. Feature mapping enriched datasets with contextual threat information. Results The proposed dual-algorithm framework demonstrated superior performance, achieving 95% accuracy, a 99% F1 score, and a 94.60% recall rate. These results outperformed the benchmarks, highlighting the model’s effectiveness in proactive anomaly detection and cyber situational awareness enhancement. Discussion The integration of STIX and ontology development within the proposed methodology significantly enhanced threat information standardization and semantic analysis. The dual-algorithm approach provided improved detection capabilities compared to traditional methods, underscoring its potential for scalable and effective cybersecurity applications. Future research could explore further optimization and real-world deployments to refine and validate the approach.