WL
Wenbo Lu
Author with expertise in Electrochemical Biosensor Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(14% Open Access)
Cited by:
4,102
h-index:
49
/
i10-index:
133
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

In Situ Derived CoB Nanoarray: A High‐Efficiency and Durable 3D Bifunctional Electrocatalyst for Overall Alkaline Water Splitting

Wenbo Lu et al.Jun 28, 2017
The development of efficient bifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of extreme importance for future renewable energy systems. This Communication reports the recent finding that room‐temperature treatment of CoO nanowire array on Ti mesh by NaBH 4 in alkaline media leads to in situ development of CoB nanoparticles on nanowire surface. The resulting self‐supported CoB@CoO nanoarray behaves as a 3D bifunctional electrocatalyst with high activity and durability for both HER (<17% current density degradation after 20 h electrolysis) and OER (<14% current density degradation after 20 h electrolysis) with the need of the overpotentials of 102 and 290 mV to drive 50 mA cm −2 in 1.0 m KOH, respectively. Moreover, its two‐electrode alkaline water electrolyzer also shows remarkably high durability and only demands a cell voltage of 1.67 V to deliver 50 mA cm −2 water‐splitting current with a current density retention of 81% after 20 h electrolysis. This work provides a promising methodology for the designing and fabricating of metal‐boride based nanoarray as a high‐active water‐splitting catalyst electrode for applications.
0

One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing

Yingwei Zhang et al.Nov 10, 2011
In this contribution, we demonstrate a green, cost-effective, one-pot preparative route toward Ag nanoparticles-graphene (AgNPs–G) nanocomposites in aqueous solution with the use of tannic acid (TA), an environmentally friendly and water-soluble polyphenol, as a reducing agent. Such AgNPs–G nanocomposites were synthesized through one-pot reduction of AgNO3 and GO by TA. We investigated surface enhanced Raman scattering (SERS) and electrochemical properties of the resultant AgNPs–G nanocomposites. It is found that such AgNPs–G nanocomposites show excellent SERS activity as SERS substrates and exhibit notable catalytic performance toward the reduction of H2O2. This enzymeless H2O2 sensor has a fast amperometric response time of less than 2 s. The linear range is estimated to be from 1 × 10−4 M to 0.01 M (r = 0.999) and the detection limit is estimated to be 7 × 10−6 M at a signal-to-noise ratio of 3. A glucose biosensor was further fabricated by immobilizing glucose oxidase (GOD) into chitosan–AgNPs–G nanocomposite film on the surface of a glassy carbon electrode (GCE). This sensor exhibits good response to glucose, and the linear response range is estimated to be from 2 to 10 mM (R = 0.996) at −0.5 V. The detection limit of 100 μM was achieved at a signal-to-noise ratio of 3. More importantly, we demonstrate successfully its application for glucose detection in human blood serum.
0

Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles–reduced graphene oxide nanocomposites for glucose detection

Xiaoyun Qin et al.Dec 12, 2012
In this study, we demonstrate that hydrothermal carbonization of low-cost wastes of willow bark leads to water-soluble, photoluminescent carbon dots (CDs) with diameters ranging from 1 to 4 nm and a quantum yield of approximately 6.0%. We further demonstrate the proof of concept that such CDs can be used as an effective photocatalyst for the simultaneous reduction of Au(III) complex and graphene oxide to form Au nanoparticles decorated reduced graphene oxide (AuNPs–rGO) nanocomposites by UV irradiation of a mixture of GO and HAuCl4 aqueous solution in the presence of CDs. It is found that the resultant AuNPs–rGO nanocomposites exhibit notable catalytic performance for H2O2 reduction and oxidation. Furthermore, we fabricate a glucose biosensor by immobilizing glucose oxidase on the AuNPs–rGO-modified glassy carbon electrode for glucose detection. The linear response range and detection limit are estimated to be from 2 mM to 18 mM (r: 0.995) and 45 μM, respectively. The application of this glucose sensor in human blood serum has also been demonstrated successfully.
Load More