ZW
Zhenyu Wu
Author with expertise in Molecular Basis of Rett Syndrome and Related Disorders
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
329
h-index:
12
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties

Ki-Hoon Han et al.Oct 22, 2013
Mutations in SHANK3 and large duplications of the region spanning SHANK3 both cause a spectrum of neuropsychiatric disorders, indicating that proper SHANK3 dosage is critical for normal brain function. However, SHANK3 overexpression per se has not been established as a cause of human disorders because 22q13 duplications involve several genes. Here we report that Shank3 transgenic mice modelling a human SHANK3 duplication exhibit manic-like behaviour and seizures consistent with synaptic excitatory/inhibitory imbalance. We also identified two patients with hyperkinetic disorders carrying the smallest SHANK3-spanning duplications reported so far. These findings indicate that SHANK3 overexpression causes a hyperkinetic neuropsychiatric disorder. To probe the mechanism underlying the phenotype, we generated a Shank3 in vivo interactome and found that Shank3 directly interacts with the Arp2/3 complex to increase F-actin levels in Shank3 transgenic mice. The mood-stabilizing drug valproate, but not lithium, rescues the manic-like behaviour of Shank3 transgenic mice raising the possibility that this hyperkinetic disorder has a unique pharmacogenetic profile. Mouse and human studies reveal that incorrect gene dosage of SHANK3 (a gene linked to some human neuropsychiatric disorders, including autism spectrum disorder) is associated with behavioural abnormalities including mania, possibly because of actin regulation problems in excitatory/inhibitory synapses. Mutations in SHANK3, the gene encoding the SHANK3 synaptic scaffolding protein, are associated with autism, intellectual disability and schizophrenia, but the effect of SHANK3 overexpression is much less clear. Huda Zoghbi and colleagues now show that mice overexpressing Shank3 exhibit mania-like behaviour, seizures and alterations in excitatory/inhibitory balance of neuronal activity. Consistent with the findings in mouse, they identify two patients with hyperkinetic disorders carrying a genetic duplication of the SHANK3-containing region on chromosome 22. These findings support the hypothesis that incorrect gene dosage in either direction (both over- and under-expression) may be detrimental. The authors suggest that the mice used in this work provide a model for the pharmacogenetic underpinnings of some forms of bipolar disorder.
0
Citation324
0
Save
12

FACT subunit SUPT16H associates with BRD4 and contributes to silencing of antiviral interferon signaling

Dawei Zhou et al.Apr 21, 2021
Summary/Abstract FACT ( FA cilitates C hromatin T ranscription) is a heterodimeric protein complex composed of SUPT16H and SSRP1, and a histone chaperone participating in chromatin remodeling during gene transcription. FACT complex is profoundly regulated, and contributes to both gene activation and suppression. Here we reported that SUPT16H, a subunit of FACT, is acetylated at lysine 674 (K674) of middle domain (MD), which involves TIP60 histone acetyltransferase. Such acetylation of SUPT16H is recognized by bromodomain protein BRD4, which promotes protein stability of SUPT16H. We further demonstrated that SUPT16H-BRD4 associates with histone modification enzymes (EZH2, HDAC1) and affects histone marks (H3K9me3, H3K27me3 and H3ac). BRD4 is known to profoundly regulate interferon (IFN) signaling, while such function of SUPT16H has never been explored. Surprisingly, our results revealed that SUPT16H genetic knockdown via RNAi or pharmacological inhibition by using its inhibitor, curaxin 137 (CBL0137), results in the induction of IFNs and interferon-stimulated genes (ISGs). Through this mechanism, CBL0137 is shown to efficiently inhibit infection of multiple viruses, including Zika, influenza, and SARS-CoV-2. Furthermore, we demonstrated that CBL0137 also causes the remarkable activation of IFN signaling in natural killer (NK) cells, which promotes the NK-mediated killing of virus-infected cells in a co-culture system using human primary NK cells. Overall, our studies unraveled the previously un-appreciated role of FACT complex in regulating IFN signaling in both epithelial and NK cells, and also proposed the novel application of CBL0137 to treat viral infections.
12
Citation5
0
Save
0

C5AR1‐induced TLR1/2 pathway activation drives proliferation and metastasis in anaplastic thyroid cancer

Haibo Liu et al.Jun 27, 2024
Abstract This study aimed to elucidate the role and mechanisms of Complement C5a receptor 1 (C5AR1) in driving the malignant progression of anaplastic thyroid carcinoma (ATC). C5AR1 expression was assessed in ATC tissues and cell lines. Functional assays evaluated the effects of C5AR1 knockdown on the malignant features of ATC cells. The interaction between C5AR1 and miR‐335‐5p was confirmed using a luciferase reporter assay and Fluorescence in situ hybridization, and the impact of C5AR1 knockdown on the Toll‐like receptor (TLR) 1/2 signaling pathway was examined. In vivo studies evaluated the effects of C5AR1 modulation on tumor growth and metastasis. C5AR1 levels were elevated in ATC tumor samples and associated with poor survival in ATC patients. C5AR1 knockdown impeded ATC cell proliferation, migration, and invasion in vitro. MiR‐335‐5p was identified as an upstream regulator of C5AR1, which negatively modulates C5AR1 expression. C5AR1 knockdown diminished TLR1, TLR2, and myeloid differentiation primary response 88 (MyD88) levels, while C5AR1 overexpression activated this pathway. Blocking TLR1/2 signaling abrogated the oncogenic effects of C5AR1 overexpression. C5AR1 silencing inhibited tumor growth and lung metastasis of ATC cells in nude mice. C5AR1 contributes to ATC tumorigenesis and metastasis by activating the TLR1/2 pathway, and is negatively regulated by miR‐335‐5p. Targeting the miR‐335‐5p/C5AR1/TLR1/2 axis represents a potential therapeutic strategy for ATC.
0

Counter-balancing X-linkedMecp2hypofunction by hyperfunction ameliorates disease features in a model of Rett syndrome: implications for genetic therapies

Christopher McGraw et al.Jan 20, 2024
Treating monogenic neurodevelopmental disorders remains challenging and mostly symptomatic. X-linked disorders affecting women such as the postnatal neurodevelopmental disorder Rett syndrome caused by mutations in the gene MECP2 have additional challenges due to dosage sensitivity and to cellular mosaicism caused by random X-chromosome inactivation. An approach to augment MECP2 expression from wild-type cells in RTT may be feasible and simpler than gene replacement but has never been tested due to known toxicity of MECP2 over-expression, as evidenced by the distinct neurological condition known as MECP2 Duplication Syndrome. Here, using genetic techniques, we find that counter-balancing Mecp2-null cells in female Mecp2 -null/+ mice by a complementary population of cells harboring an X-linked transgene associated with 3X normal levels of MECP2 leads to normalization of multiple whole animal phenotypic outcomes without noticeable toxicity. In addition, in vivo LFP recordings demonstrate that counter-balancing Mecp2 loss-of-function improves select within-region and between-region abnormalities. By comparing the counter-balance approach with an approach based on cell autonomous restoration of MeCP2 using an autosomal transgene expressing 2X normal levels of MECP2 in all cells (mimicking gene replacement), we identify neurobehavioral and electrographic features best suited for preclinical biomarkers of a therapeutic response to cell autonomous versus non-cell autonomous correction. Notably, these proof-of-concept findings demonstrate how non-cell autonomous suppression of MeCP2 deficiency by boosting overall wild-type MeCP2 levels may be a viable disease-modifying therapy for RTT, with potential implications for genetic-based therapies of monogenic X-linked disorders.
4

KDM5A/B promotes HIV-1 latency and KDM5 inhibitors promote HIV-1 lytic reactivation

Tai-Wei Li et al.Nov 17, 2022
Abstract Combinational antiretroviral therapy (cART) effectively suppresses HIV-1 infection, replication, and pathogenesis in HIV-1 patients. However, the patient’s HIV-1 reservoir still cannot be eliminated by current cART or other therapies. One putative HIV-1 eradication strategy is “shock and kill”, which reactivates HIV-1 in latently-infected cells and induces their cytopathic effect or immune clearance to decrease the patients’ reservoir size. KDM5A and KDM5B act as the HIV-1 latency-promoting genes, decreasing the HIV-1 viral gene transcription and reactivation in infected cells. Depletion of KDM5 A/B by siRNA knockdown (KD) increases H3K4 trimethylation (H3K4me3) in HIV-1 Tat-mediated transactivation. We also found that the KDM5-specific inhibitor JQKD82 can increase H3K4me3 at the HIV-1 LTR region during HIV-1 reactivation and induce cytopathic effects. We applied the JQKD82 in combination with the non-canonical NF-κB activator AZD5582, which synergistically induced HIV-1 reactivation and cell apoptosis in HIV-1 infected cells. These results suggested that the KDM5 inhibition can be a putative HIV-1 latency-reversing strategy for the HIV-1 “shock and kill” eradication therapy.