WW
Wei Wei
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
784
h-index:
39
/
i10-index:
86
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia

Wan‐Jin Chen et al.Nov 20, 2011
+13
Z
Y
W
0
Citation444
0
Save
0

The Fetal Basis of Amyloidogenesis: Exposure to Lead and Latent Overexpression of Amyloid Precursor Protein and β-Amyloid in the Aging Brain

Riyaz Basha et al.Jan 26, 2005
+5
S
W
R
The fetal basis of adult disease (FeBAD) hypothesis states that many adult diseases have a fetal origin. According to FeBAD, injury or environmental influences occurring at critical periods of organ development could result in “programmatic” changes via alterations in gene expression or gene imprinting that may result in functional deficits that become apparent later in life. Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by excessive deposits of aggregated β-amyloid (Aβ) peptides, which are snippets of the β-amyloid precursor protein (APP). The predominately sporadic nature of AD suggests that the environment must play a role in neurodegeneration. To examine latent responses to an environmental agent, we exposed rodents to lead and monitored the lifetime expression of the APP gene. We observed that APP mRNA expression was transiently induced in neonates, but exhibited a delayed overexpression 20 months after exposure to Pb had ceased. This upregulation in APP mRNA expression was commensurate with a rise in activity of the transcription factor Sp1, one of the regulators of the APP gene. Furthermore, the increase in APP gene expression in old age was accompanied by an elevation in APP and its amyloidogenic Aβ product. In contrast, APP expression, Sp1 activity, as well as APP and Aβ protein levels were unresponsive to Pb exposure during old age. These data suggested that environmental influences occurring during brain development predetermined the expression and regulation of APP later in life, potentially altering the course of amyloidogenesis.
0
Citation335
0
Save
0

Complete Disruption of Autism-Susceptibility Genes by Gene-Editing Predominantly Reduces Functional Connectivity of Isogenic Human Neurons

Éric Deneault et al.Jun 11, 2018
+20
D
S
É
Summary Autism Spectrum Disorder is phenotypically and genetically heterogeneous, but genomic analyses have identified candidate susceptibility genes. We present a CRISPR gene editing strategy to insert a protein tag and premature termination sites creating an induced pluripotent stem cell (iPSC) knockout resource for functional studies of 10 ASD-relevant genes ( AFF2/FMR2, ANOS1, ASTN2, ATRX , CACNA1C , CHD8, DLGAP2, KCNQ2 , SCN2A , TENM1 ). Neurogenin 2 (NEUROG2)-directed differentiation of iPSCs allowed production of cortical excitatory neurons, and mutant proteins were not detectable. RNAseq revealed convergence of several neuronal networks. Using both patch-clamp and multi-electrode array approaches, the electrophysiological deficits measured were distinct for different mutations. However, they culminated in a consistent reduction in synaptic activity, including reduced spontaneous excitatory post-synaptic current frequencies in AFF2/FMR2- , ASTN2-, ATRX -, KCNQ2 - and SCN2A -null neurons. Despite ASD susceptibility genes belonging to different gene ontologies, isogenic stem cell resources can reveal common functional phenotypes, such as reduced functional connectivity.
0
Citation3
0
Save
13

Buffering of transcription rate by mRNA half-life is a conserved feature of Rett syndrome models

Deivid Rodrigues et al.Dec 13, 2021
+8
A
K
D
Abstract Models of MECP2 dysfunction in Rett syndrome (RTT) assume that transcription rate changes directly correlate with altered steady-state mRNA levels. However, limited evidence suggests that transcription rate changes are buffered by poorly understood compensatory post-transcriptional mechanisms. Here we measure transcription rate and mRNA half-life changes in RTT patient neurons using RATE-seq, and reinterpret nuclear and whole-cell RNAseq from Mecp2 mice. Genes are dysregulated by changing transcription rate only or half-life only and are buffered when both are changed. We utilized classifier models to understand the direction of transcription rate changes based on gene-body DNA sequence, and combined frequencies of three dinucleotides were better predictors than contributions by CA and CG. MicroRNA and RNA-Binding Protein (RBP) motifs were enriched in 3’UTRs of genes with half-life changes. Motifs for nuclear localized RBPs were enriched on buffered genes with increased transcription rate. Our findings identify post-transcriptional mechanisms in humans and mice that alter half-life only or buffer transcription rate changes when a transcriptional modulator gene is mutated in a neurodevelopmental disorder.
13
Citation1
0
Save
1

Using the UniFrac metric on Whole Genome Shotgun data

Wei Wei et al.Jan 20, 2022
D
W
Abstract The UniFrac metric has proven useful in revealing diversity across metagenomic communities. Due to the phylogeny-based nature of this measurement, UniFrac has historically only been applied to 16S rRNA data. Simultaneously, Whole Genome Shotgun (WGS) metagenomics has been increasingly widely employed and proven to provide more information than 16S data, but a UniFrac-like diversity metric suitable for WGS data has not previously been developed. The main obstacle for UniFrac to be applied directly to WGS data is the absence of phylogenetic distances in the taxonomic relationship derived from WGS data. In this study, we demonstrate a method to overcome this intrinsic difference and compute the UniFrac metric on WGS data by assigning branch lengths to the taxonomic tree obtained from input taxonomic profiles. We conduct a series of experiments to demonstrate that this WGSUniFrac method is comparably robust to traditional 16S UniFrac and is not highly sensitive to branch lengths assignments, be they data-derived or model-prescribed. Code implementing a prototype of WGSUniFrac along with paper reproducible are available at https://github.com/KoslickiLab/WGSUniFrac .
1
Citation1
0
Save
0

A precise microdissection strategy enabled spatial heterogeneity analysis on the targeted region of formalin-fixed paraffin-embedded tissues

Chen Chen et al.Jul 1, 2024
+9
W
Y
C
In recent years, the development of spatial transcriptomic technologies has enabled us to gain an in-depth understanding of the spatial heterogeneity of gene expression in biological tissues. However, a simple and efficient tool is required to analyze multiple spatial targets, such as mRNAs, miRNAs, or genetic mutations, at high resolution in formalin-fixed paraffin-embedded (FFPE) tissue sections. In this study, we developed hydrogel pathological sectioning coupled with the previously reported Sampling Junior instrument (HPSJ) to assess the spatial heterogeneity of multiple targets in FFPE sections at a scale of 180 μm. The HPSJ platform was used to demonstrate the spatial heterogeneity of 9 ferroptosis-related genes (TFRC, NCOA4, FTH1, ACSL4, LPCAT3, ALOX12, SLC7A11, GLS2, and GPX4) and 2 miRNAs (miR-185-5p and miR522) in FFPE tissue samples from patients with triple-negative breast cancer (TNBC). The results validated the significant heterogeneity of ferroptosis-related mRNAs and miRNAs. In addition, HPSJ confirmed the spatial heterogeneity of the L858R mutation in 7 operation-sourced and 4 needle-biopsy-sourced FFPE samples from patients with lung adenocarcinoma (LUAD). The successful detection of clinical FFPE samples indicates that HPSJ is a precise, high-throughput, cost-effective, and universal platform for analyzing spatial heterogeneity, which is beneficial for elucidating the mechanisms underlying drug resistance and guiding the prescription of mutant-targeted drugs in patients with tumors.
7

Transcriptional buffering and 3ʹUTR lengthening are shaped during human neurodevelopment by shifts in mRNA stability and microRNA load

Marat Mufteev et al.Mar 1, 2023
+8
K
D
M
The contribution of mRNA half-life is commonly overlooked when examining changes in mRNA abundance during development. mRNA levels of some genes are regulated by transcription rate only, but others may be regulated by mRNA half-life only shifts. Furthermore, transcriptional buffering is predicted when changes in transcription rates have compensating shifts in mRNA half-life resulting in no change to steady-state levels. Likewise, transcriptional boosting should result when changes in transcription rate are accompanied by amplifying half-life shifts. During neurodevelopment there is widespread 3'UTR lengthening that could be shaped by differential shifts in the stability of existing short or long 3'UTR transcript isoforms. We measured transcription rate and mRNA half-life changes during induced human Pluripotent Stem Cell (iPSC)-derived neuronal development using RATE-seq. During transitions to progenitor and neuron stages, transcriptional buffering occurred in up to 50%, and transcriptional boosting in up to 15%, of genes with changed transcription rates. The remaining changes occurred by transcription rate only or mRNA half-life only shifts. Average mRNA half-life decreased two-fold in neurons relative to iPSCs. Short gene isoforms were more destabilized in neurons and thereby increased the average 3'UTR length. Small RNA sequencing captured an increase in microRNA copy number per cell during neurodevelopment. We propose that mRNA destabilization and 3'UTR lengthening are driven in part by an increase in microRNA load in neurons. Our findings identify mRNA stability mechanisms in human neurodevelopment that regulate gene and isoform level abundance and provide a precedent for similar post-transcriptional regulatory events as other tissues develop.
0

Identification of TIA1 mRNA targets during human neuronal development

Loryn Byres et al.Jan 27, 2021
+5
K
M
L
Abstract Background Neuronal development is a tightly controlled process involving multi-layered regulatory mechanisms. While transcriptional pathways regulating neurodevelopment are well characterized, post-transcriptional programs are still poorly understood. TIA1 is an RNA-binding protein that can regulate splicing, stability, or translation of target mRNAs, and has been shown to play critical roles in neurodevelopment. However, the identity of mRNAs regulated by TIA1 during neurodevelopment is still unknown. Methods and Results To identify the mRNAs targeted by TIA1 during the first stages of human neurodevelopment, we performed RNA immunoprecipitation-sequencing (RIP-seq) on human embryonic stem cells (hESCs) and derived neural progenitor cells (NPCs), and cortical neurons. While there was no change in TIA1 protein levels, the number of TIA1 targeted mRNAs decreased from pluripotent cells to neurons. We identified 2400, 845, and 330 TIA1 mRNA targets in hESCs, NPC, and neurons, respectively. The vast majority of mRNA targets in hESC were genes associated with neurodevelopment and included autism spectrum disorder-risk genes that were not bound in neurons. Additionally, we found that most TIA1 mRNA targets have reduced ribosomal engagement levels. Conclusion Our results reveal TIA1 mRNA targets in hESCs and during human neurodevelopment, indicate that translation repression is a key process targeted by TIA1 binding and implicate TIA1 function in neuronal differentiation.
0

Control iPSC lines with clinically annotated genetic variants for versatile multi-lineage differentiation

Matthew Hildebrandt et al.Jun 10, 2019
+25
M
J
M
Induced Pluripotent Stem Cells (iPSC) derived from healthy individuals are important controls for disease modeling studies. To create a resource of genetically annotated iPSCs, we reprogrammed footprint-free lines from four volunteers in the Personal Genome Project Canada (PGPC). Multilineage directed differentiation efficiently produced functional cortical neurons, cardiomyocytes and hepatocytes. Pilot users further demonstrated line versatility by generating kidney organoids, T-lymphocytes and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole genome sequencing (WGS) based annotation of PGPC lines revealed on average 20 coding variants. Importantly, nearly all annotated PGPC and HipSci lines harboured at least one pre-existing or acquired variant with cardiac, neurological or other disease associations. Overall, PGPC lines were efficiently differentiated by multiple users into cell types found in six tissues for disease modeling, and clinical annotation highlighted variant-preferred lines for use as unaffected controls in specific disease settings.