SA
Sani Abba
Author with expertise in Real-time Water Quality Monitoring and Aquaculture Management
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
24
(42% Open Access)
Cited by:
908
h-index:
35
/
i10-index:
106
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Groundwater level prediction using machine learning models: A comprehensive review

Tao Hai et al.Mar 14, 2022
Developing accurate soft computing methods for groundwater level (GWL) forecasting is essential for enhancing the planning and management of water resources. Over the past two decades, significant progress has been made in GWL prediction using machine learning (ML) models. Several review articles have been published, reporting the advances in this field up to 2018. However, the existing review articles do not cover several aspects of GWL simulations using ML, which are significant for scientists and practitioners working in hydrology and water resource management. The current review article aims to provide a clear understanding of the state-of-the-art ML models implemented for GWL modeling and the milestones achieved in this domain. The review includes all of the types of ML models employed for GWL modeling from 2008 to 2020 (138 articles) and summarizes the details of the reviewed papers, including the types of models, data span, time scale, input and output parameters, performance criteria used, and the best models identified. Furthermore, recommendations for possible future research directions to improve the accuracy of GWL prediction models and enhance the related knowledge are outlined.
0
Paper
Citation234
0
Save
0

Wastewater treatment plant performance analysis using artificial intelligence – an ensemble approach

Vahid Nourani et al.Nov 20, 2018
Abstract In the present study, three different artificial intelligence based non-linear models, i.e. feed forward neural network (FFNN), adaptive neuro fuzzy inference system (ANFIS), support vector machine (SVM) approaches and a classical multi-linear regression (MLR) method were applied for predicting the performance of Nicosia wastewater treatment plant (NWWTP), in terms of effluent biological oxygen demand (BODeff), chemical oxygen demand (CODeff) and total nitrogen (TNeff). The daily data were used to develop single and ensemble models to improve the prediction ability of the methods. The obtained results of single models proved that, ANFIS model provides effective outcomes in comparison with single models. In the ensemble modeling, simple averaging ensemble, weighted averaging ensemble and neural network ensemble techniques were proposed subsequently to improve the performance of the single models. The results showed that in prediction of BODeff, the ensemble models of simple averaging ensemble (SAE), weighted averaging ensemble (WAE) and neural network ensemble (NNE), increased the performance efficiency of artificial intelligence (AI) modeling up to 14%, 20% and 24% at verification phase, respectively, and less than or equal to 5% for both CODeff and TNeff in calibration phase. This shows that NNE model is more robust and reliable ensemble method for predicting the NWWTP performance due to its non-linear averaging kernel.
0

Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS Techniques

Romulus Costache et al.Dec 27, 2019
Concerning the significant increase in the negative effects of flash-floods worldwide, the main goal of this research is to evaluate the power of the Analytical Hierarchy Process (AHP), fi (kNN), K-Star (KS) algorithms and their ensembles in flash-flood susceptibility mapping. To train the two stand-alone models and their ensembles, for the first stage, the areas affected in the past by torrential phenomena are identified using remote sensing techniques. Approximately 70% of these areas are used as a training data set along with 10 flash-flood predictors. It should be remarked that the remote sensing techniques play a crucial role in obtaining eight out of 10 flash-flood conditioning factors. The predictive capability of predictors is evaluated through the Information Gain Ratio (IGR) method. As expected, the slope angle results in the factor with the highest predictive capability. The application of the AHP model implies the construction of ten pair-wise comparison matrices for calculating the normalized weights of each flash-flood predictor. The computed weights are used as input data in kNN–AHP and KS–AHP ensemble models for calculating the Flash-Flood Potential Index (FFPI). The FFPI also is determined through kNN and KS stand-alone models. The performance of the models is evaluated using statistical metrics (i.e., sensitivity, specificity and accuracy) while the validation of the results is done by constructing the Receiver Operating Characteristics (ROC) Curve and Area Under Curve (AUC) values and by calculating the density of torrential pixels within FFPI classes. Overall, the best performance is obtained by the kNN–AHP ensemble model.
0

New strategy based on Hammerstein–Wiener and supervised machine learning for identification of treated wastewater salinization in Al-Hassa region, Saudi Arabia

Syed Shah et al.Jun 12, 2024
Abstract The agricultural sector faces challenges in managing water resources efficiently, particularly in arid regions dealing with water scarcity. To overcome water stress, treated wastewater (TWW) is increasingly utilized for irrigation purpose to conserve available freshwater resources. There are several critical aspects affecting the suitability of TWW for irrigation including salinity which can have detrimental effects on crop yield and soil health. Therefore, this study aimed to develop a novel approach for TWW salinity prediction using artificial intelligent (AI) ensembled machine learning approach. In this regard, several water quality parameters of the TWW samples were collected through field investigation from the irrigation zones in Al-Hassa, Saudi Arabia, which were later assessed in the lab. The assessment involved measuring Temperature (T), pH, Oxidation Reduction Potential (ORP), Electrical Conductivity (EC), Total Dissolved Solids (TDS), and Salinity, through an Internet of Things (IoT) based system integrated with a real-time monitoring and a multiprobe device. Based on the descriptive statistics of the data and correlation obtained through the Pearson matrix, the models were formed for predicting salinity by using the Hammerstein-Wiener Model (HWM) and Support Vector Regression (SVR). The models’ performance was evaluated using several statistical indices including correlation coefficient (R), coefficient of determination (R 2 ), mean square error (MSE), and root mean square error (RMSE). The results revealed that the HWM-M3 model with its superior predictive capabilities achieved the best performance, with R 2 values of 82% and 77% in both training and testing stages. This study demonstrates the effectiveness of AI-ensembled machine learning approach for accurate TWW salinity prediction, promoting the safe and efficient utilization of TWW for irrigation in water-stressed regions. The findings contribute to a growing body of research exploring AI applications for sustainable water management.
Load More