Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
YD
Yang Ding
Author with expertise in Crystallization Processes and Control
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
29
(83% Open Access)
Cited by:
483
h-index:
17
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Manipulating Peierls Distortion in van der Waals NbOX2 Maximizes Second-Harmonic Generation

Tonghuan Fu et al.Jul 19, 2023
Two-dimensional (2D) van der Waals (vdW) materials, featuring relaxed phase-matching conditions and highly tunable optical nonlinearity, endow them with potential applications in nanoscale nonlinear optical (NLO) devices. Despite significant progress, fundamental questions in 2D NLO materials remain, such as how structural distortion affects second-order NLO properties, which call for advanced regulation and in situ diagnostic tools. Here, by applying pressure to continuously tune the displacement of Nb atoms in 2D vdW NbOI2, we effectively modulate the polarization and achieve a 3-fold boost of the second-harmonic generation (SHG) at 2.5 GPa. By introducing a Peierls distortion parameter, λ, we establish a quantitative relationship between λ and SHG intensity. Importantly, we further demonstrate that the SHG enhancement can be achieved under ambient conditions by anionic substitution to tune the distortion in NbO(I1-xBrx)2 (x = 0-1) compounds, where the chemical tailoring simulates the pressure effects on the structural optimization. Consequently, NbO(I0.60Br0.40)2 with λ = 0.17 exhibits a giant SHG of over 2 orders of magnitude higher than that in monolayer WSe2, reaching the record-high value among reported 2D vdW NLO materials. This work unambiguously demonstrates the correlation between Peierls distortion and SHG property and, more broadly, opens new paths for the development of advanced NLO materials by manipulating the structure distortions.
0

Exciton engineering of 2D Ruddlesden–Popper perovskites by synergistically tuning the intra and interlayer structures

Songhao Guo et al.Apr 8, 2024
Abstract Designing two-dimensional halide perovskites for high-performance optoelectronic applications requires deep understanding of the structure-property relationship that governs their excitonic behaviors. However, a design framework that considers both intra and interlayer structures modified by the A-site and spacer cations, respectively, has not been developed. Here, we use pressure to synergistically tune the intra and interlayer structures and uncover the structural modulations that result in improved optoelectronic performance. Under applied pressure, (BA) 2 (GA)Pb 2 I 7 exhibits a 72-fold boost of photoluminescence and 10-fold increase of photoconductivity. Based on the observed structural change, we introduce a structural descriptor χ that describes both the intra and interlayer characteristics and establish a general quantitative relationship between χ and photoluminescence quantum yield: smaller χ correlates with minimized trapped excitons and more efficient emission from free excitons. Building on this principle, we design a perovskite (CMA) 2 (FA)Pb 2 I 7 that exhibits a small χ and an impressive photoluminescence quantum yield of 59.3%.
1

Metallization of Quantum Material GaTa4Se8 at High Pressure

Hongshan Deng et al.Jun 10, 2021
Pressure is a unique thermodynamic variable to explore the phase competitions and novel phases inaccessible at ambient conditions. The resistive switching material GaTa4Se8 displays several quantum phases under pressure, such as a Jeff = 3/2 Mott insulator, a correlated quantum magnetic metal, and d-wave topological superconductivity, which has recently drawn considerable interest. Using high-pressure Raman spectroscopy, X-ray diffraction, extended X-ray absorption, transport measurements, and theoretical calculations, we reveal a complex phase diagram for GaTa4Se8 at pressures exceeding 50 GPa. In this previously unattained pressure regime, GaTa4Se8 ranges from a Mott insulator to a metallic phase and exhibits superconducting phases. In contrast to previous studies, we unveil a hidden correlation between the structural distortion and band gap prior to the insulator-to-metal transition, and the metallic phase shows superconductivity with structural and magnetic properties that are distinctive from the lower-pressure phase. These discoveries highlight that GaTa4Se8 is a unique material to probe novel quantum phases from a structural, metallicity, magnetism, and superconductivity perspective.
0

Anomalous Charge Transfer from Organic Ligands to Metal Halides in Zero‐Dimensional [(C6H5)4P]2SbCl5 Enabled by Pressure‐Induced Lone Pair‐π Interaction

Hui Luo et al.Jul 19, 2023
Abstract Low‐dimensional (low‐D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low‐D OMHHs, especially the zero‐D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near‐unity photoluminescence quantum yield (PLQY) at around 6.0 GPa in a 0D OMHH, [(C 6 H 5 ) 4 P] 2 SbCl 5 . In situ experimental characterizations and theoretical simulations reveal that the pressure‐induced electronic coupling between the lone‐pair electrons of Sb 3+ and the π electrons of benzene ring (lp‐π interaction) serves as an unexpected “bridge” for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp‐π interactions in organic–inorganic hybrid systems.
Load More