HZ
Hui Zhao
Author with expertise in Elicitor Signal Transduction for Metabolite Production
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
300
h-index:
29
/
i10-index:
70
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Active Power Decoupling for High-Power Single-Phase PWM Rectifiers

Hongbo Li et al.Jul 17, 2012
Single-phase pulsewidth modulation rectifiers suffer from ripple power pulsating at twice the line frequency. The ripple power is usually filtered by a bulky capacitor bank or an LC branch, resulting in lower power density. The alternative way is active power decoupling, which uses an active circuit to direct the pulsating power into another energy-storage component. The main dc-link filter capacitor can, therefore, be reduced substantially. This paper proposed a new scheme of active power decoupling. The circuit consists of a third leg, an energy-storage capacitor and a smoothing inductor. The topology combined the advantages of high energy-storage efficiency and low requirement on control bandwidth. Both the pulsating power from the ac source and the reactive power of the smoothing inductors are taken into consideration when deriving the power decoupling scheme. The active power filter's (APF) capacitor voltage control system consists of inner loop pole-placement control and outer loop proportional-resonant control. To enhance the steady-state performance, the capacitor voltage reference is modified in a closed-loop manner. Simulation and experimental results show that the proposed APF scheme has good power decoupling performance and is more suited for high-power applications where switching frequency is limited.
0

Regulating the Distribution and Accumulation of Charged Molecules by Progressive Electroporation for Improved Intracellular Delivery

Xianghong Tao et al.Jul 3, 2024
The cell membrane separates the intracellular compartment from the extracellular environment, constraining exogenous molecules to enter the cell. Conventional electroporation typically employs high-voltage and short-duration pulses to facilitate the transmembrane transport of molecules impermeable to the membrane under natural conditions by creating temporary hydrophilic pores on the membrane. Electroporation not only enables the entry of exogenous molecules but also directs the intracellular distribution of the electric field. Recent advancements have markedly enhanced the efficiency of intracellular molecule delivery, achieved through the utilization of microstructures, microelectrodes, and surface modifications. However, little attention is paid to regulating the motion of molecules during and after passing through the membrane to improve delivery efficiency, resulting in an unsatisfactory delivery efficiency and high dose demand. Here, we proposed the strategy of regulating the motion of charged molecules during the delivery process by progressive electroporation (PEP), utilizing modulated electric fields. Efficient delivery of charged molecules with an expanded distribution and increased accumulation by PEP was demonstrated through numerical simulations and experimental results. The dose demand can be reduced by 10–40% depending on the size and charge of the molecules. We confirmed the safety of PEP for intracellular delivery in both short and long terms through cytotoxicity assays and transcriptome analysis. Overall, this work not only reveals the mechanism and effectiveness of PEP-enhanced intracellular delivery of charged molecules but also suggests the potential integration of field manipulation of molecular motion with surface modification techniques for biomedical applications such as cell engineering and sensitive cellular monitoring.
0

Suppression of Secondary Electron Emission by Vertical Graphene Coating on Ni Microcavity Substrate

Xiaoning Zhang et al.Jul 29, 2024
Suppression of secondary electron emission (SEE) from metal surfaces is crucial for enhancing the performance of particle accelerators, spacecraft, and vacuum electronic devices. Earlier research has demonstrated that either etching the metal surface to create undulating structures or coating it with materials having low secondary electron yield (SEY) can markedly decrease SEE. However, the effectiveness of growing vertical graphene (VG) on laser-etched metal surfaces in suppressing SEE remains uncertain. This study examined the collective impact of these methods by applying nanoscale arrays of VG coating using plasma-enhanced chemical vapor deposition on Ni substrates, along with the formation of micrometer-sized microcavity array through laser etching. Comparative tests conducted revealed that the SEY of the samples subjected to VG coating on a microcavity array was lower compared to samples with either only a microcavity array or VG coating alone. Additionally, the crystallinity of VG grown on substrates of varying shapes exhibited variations. This study presents a new method for investigating the suppression of SEE on metal surfaces, contributing to the existing body of knowledge in this field.