CT
Chee Tan
Author with expertise in Privacy-Preserving Techniques for Data Analysis and Machine Learning
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(42% Open Access)
Cited by:
901
h-index:
39
/
i10-index:
89
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Power Control By Geometric Programming

Mung Chiang et al.Jul 1, 2007
In wireless cellular or ad hoc networks where Quality of Service (QoS) is interference-limited, a variety of power control problems can be formulated as nonlinear optimization with a system-wide objective, e.g., maximizing the total system throughput or the worst user throughput, subject to QoS constraints from individual users, e.g., on data rate, delay, and outage probability. We show that in the high Signal-to- interference Ratios (SIR) regime, these nonlinear and apparently difficult, nonconvex optimization problems can be transformed into convex optimization problems in the form of geometric programming; hence they can be very efficiently solved for global optimality even with a large number of users. In the medium to low SIR regime, some of these constrained nonlinear optimization of power control cannot be turned into tractable convex formulations, but a heuristic can be used to compute in most cases the optimal solution by solving a series of geometric programs through the approach of successive convex approximation. While efficient and robust algorithms have been extensively studied for centralized solutions of geometric programs, distributed algorithms have not been explored before. We present a systematic method of distributed algorithms for power control that is geometric-programming-based. These techniques for power control, together with their implications to admission control and pricing in wireless networks, are illustrated through several numerical examples.
0

A Credible and Fair Federated Learning Framework Based on Blockchain

Leiming Chen et al.Jan 1, 2024
Federated learning enables cooperative computation between multiple participants while protecting user privacy. Currently, federated learning algorithms assume that all participants are trustworthy and their systems are secure. However, the following problems arise in real-world scenarios: (1) Malicious clients disrupt federated learning through model poisoning and data poisoning attacks. Although some research has proposed secure aggregation methods to solve this problem, most methods have limitations. (2) Due to the variance in data quality and computational resources among participants, rewards cannot be distributed equally. Some clients also exhibit free-rider behavior, seeking to cheat the reward system and manipulate global models. Evaluating client contribution and distributing rewards also present challenges. To address these challenges, we design a trustworthy federated framework to ensure secure computing throughout the federated task process. First, we propose a malicious model detection method for secure model aggregation. Then, we also propose a fair method of assessing contribution to identify client-side free-riding behavior. Lastly, we develop a computation process grounded in blockchain and smart contracts to guarantee the trustworthiness and fairness of federated tasks. To validate the performance of our framework, we simulate different types of client attacks and contribution evaluation scenarios on several open-source datasets. The experiments show that our framework guarantees the federated task's credibility and achieves fair client contribution evaluation.
0

FedTKD: A Trustworthy Heterogeneous Federated Learning Based on Adaptive Knowledge Distillation

Leiming Chen et al.Jan 22, 2024
Federated learning allows multiple parties to train models while jointly protecting user privacy. However, traditional federated learning requires each client to have the same model structure to fuse the global model. In real-world scenarios, each client may need to develop personalized models based on its environment, making it difficult to perform federated learning in a heterogeneous model environment. Some knowledge distillation methods address the problem of heterogeneous model fusion to some extent. However, these methods assume that each client is trustworthy. Some clients may produce malicious or low-quality knowledge, making it difficult to aggregate trustworthy knowledge in a heterogeneous environment. To address these challenges, we propose a trustworthy heterogeneous federated learning framework (FedTKD) to achieve client identification and trustworthy knowledge fusion. Firstly, we propose a malicious client identification method based on client logit features, which can exclude malicious information in fusing global logit. Then, we propose a selectivity knowledge fusion method to achieve high-quality global logit computation. Additionally, we propose an adaptive knowledge distillation method to improve the accuracy of knowledge transfer from the server side to the client side. Finally, we design different attack and data distribution scenarios to validate our method. The experiment shows that our method outperforms the baseline methods, showing stable performance in all attack scenarios and achieving an accuracy improvement of 2% to 3% in different data distributions.
0
Citation2
0
Save
0

VFL-Cafe: Communication-Efficient Vertical Federated Learning via Dynamic Caching and Feature Selection

Jiahui Zhou et al.Jan 14, 2025
Vertical Federated Learning (VFL) is a promising category of Federated Learning that enables collaborative model training among distributed parties with data privacy protection. Due to its unique training architecture, a key challenge of VFL is high communication cost due to transmitting intermediate results between the Active Party and Passive Parties. Current communication-efficient VFL methods rely on using stale results without meticulous selection, which can impair model accuracy, particularly in noisy data environments. To address these limitations, this work proposes VFL-Cafe, a new VFL training method that leverages dynamic caching and feature selection to boost communication efficiency and model accuracy. In each communication round, the employed caching scheme allows multiple batches of intermediate results to be cached and strategically reused by different parties, reducing the communication overhead while maintaining model accuracy. Additionally, to eliminate the negative impact of noisy features that may undermine the effectiveness of using stale results to reduce communication rounds and incur significant model degradation, a feature selection strategy is integrated into each round of local updates. Theoretical analysis is then conducted to provide guidance on cache configuration, optimizing performance. Finally, extensive experimental results validate VFL-Cafe’s efficacy, demonstrating remarkable improvements in communication efficiency and model accuracy.
Load More