KN
Kavindra Nath
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
7
(29% Open Access)
Cited by:
0
h-index:
22
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Impact of therapeutic inhibition of oncogenic cell signaling tyrosine kinase on cell metabolism: in vivo-detectable metabolic biomarkers of inhibition

Kavindra Nath et al.Jul 4, 2024
Abstract Background Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly. Noninvasive 1 H magnetic resonance spectroscopy (MRS) can measure in vitro and in vivo concentration of key metabolites which may potentially serve as biomarkers of response to kinase inhibition. Methods We employed mantle cell lymphoma (MCL) cell lines demonstrating markedly diverse sensitivity of inhibition of Bruton’s tyrosine kinase (BTK) regarding their growth and studied in-depth effects of the inhibition on various aspects of cell metabolism including metabolite synthesis using metabolomics, glucose and oxidative metabolism by Seahorse XF technology, and concentration of index metabolites lactate, alanine, total choline and taurine by 1 H MRS. Results Effective BTK inhibition profoundly suppressed key cell metabolic pathways, foremost pyrimidine and purine synthesis, the citrate (TCA) cycle, glycolysis, and pyruvate and glutamine/alanine metabolism. It also inhibited glycolysis and amino acid-related oxidative metabolism. Finally, it profoundly and quickly decreased concentration of lactate (a product of mainly glycolysis) and alanine (an indicator of amino acid metabolism) and, less universally total choline both in vitro and in vivo, in the MCL xenotransplant model. The decrease correlated directly with the degree of inhibition of lymphoma cell expansion and tumor growth. Conclusions Our results indicate that BTK inhibition exerts a broad and profound suppressive effect on cell metabolism and that the affected index metabolites such as lactate, alanine may serve as early, sensitive, and reliable biomarkers of inhibition in lymphoma patients detectable by noninvasive MRS-based imaging method. This kind of imaging-based detection may also be applicable to other kinase inhibitors, as well as diverse lymphoid and non-lymphoid malignancies.
0

Enhancing Radiation Therapy Response in Prostate Cancer Through Metabolic Modulation by Mito-Lonidamine: A 1H and 31P Magnetic Resonance Spectroscopy Study

Stepan Orlovskiy et al.Jan 9, 2025
Radiation therapy (RT) is the cornerstone treatment for prostate cancer; however, it frequently induces gastrointestinal and genitourinary toxicities that substantially diminish the patients’ quality of life. While many individuals experience transient side effects, a subset endures persistent, long-term complications. A promising strategy to mitigate these toxicities involves enhancing tumor radiosensitivity, potentially allowing for lower radiation doses. In this context, mito-lonidamine (Mito-LND), an antineoplastic agent targeting the mitochondrial electron transport chain’s complexes I and II, emerges as a potential radiosensitizer. This study investigated Mito-LND’s capacity to augment RT efficacy and reduce adverse effects through comprehensive in vitro and in vivo assessments using hormone-sensitive and hormone-refractory prostate cancer models. Employing a Seahorse analysis and 1H/31P magnetic resonance spectroscopy (MRS), we observed that Mito-LND selectively suppressed lactate production, decreased intracellular pH, and reduced bioenergetics and oxygen consumption levels within tumor cells. These findings suggest that Mito-LND remodels the tumor microenvironment by inducing acidification, metabolic de-energization, and enhanced oxygenation, thereby sensitizing tumors to RT. Our results underscore the potential of Mito-LND as a therapeutic adjunct in RT to improve patient outcomes and reduce radiation-associated toxicities in early-stage prostate cancer.