Abstract Electrocatalytic water splitting is long constrained by the sluggish kinetics of anodic oxygen evolution reaction (OER), and rational spin‐state manipulation holds great promise to break through this bottleneck. Low‐spin Fe 3+ (LS, t 2g 5 e g 0 ) species are identified as highly active sites for OER in theory, whereas it is still a formidable challenge to construct experimentally. Herein, a new strategy is demonstrated for the effective construction of LS Fe 3+ in NiFe‐layered double hydroxide (NiFe‐LDH) by introducing multiple defects, which induce coordination unsaturation over Fe sites and thus enlarge their d orbital splitting energy. The as‐obtained catalyst exhibits extraordinary OER performance with an ultra‐low overpotential of 244 mV at the industrially required current density of 500 mA cm −2 , which is 110 mV lower than that of the conventional NiFe‐LDH with high‐spin Fe 3+ (HS, t 2g 3 e g 2 ) and superior to most previously reported NiFe‐based catalysts. Comprehensive experimental and theoretical studies reveal that LS Fe 3+ configuration effectively reduces the adsorption strength of the O* intermediate compared with that of the HS case, thereby altering the rate‐determining step from (O* → OOH*) to (OH* → O*) of OER and lowering its reaction energy barrier. This work paves a new avenue for developing efficient spin‐dependent electrocatalysts for OER and beyond.