Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states. Transition metal dichalcogenide (TMDC) crystals exhibit new emergent properties at monolayer thickness1,2, notably strong many-body effects mediated by Coulomb interactions3,4,5,6. A manifestation of these many-body interactions is the formation of excitons, bound electron–hole pairs, but higher-order excitonic states are also possible. Here we demonstrate the existence of four-body, biexciton states in monolayer WSe2. The biexciton is identified as a sharply defined state in photoluminescence at high exciton density. Its binding energy of 52 meV is more than an order of magnitude greater than that found in conventional quantum-well structures7. A variational calculation of the biexciton state reveals that the high binding energy arises not only from strong carrier confinement, but also from reduced and non-local dielectric screening. These results open the way for the creation of new correlated excitonic states linking the degenerate valleys in TMDC crystals, as well as more complex many-body states such as exciton condensates or the recently reported dropletons8.