GL
Gengling Liu
Author with expertise in Perovskite Solar Cell Technology
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
0
h-index:
18
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Blade‐Coating (100)‐Oriented α‐FAPbI3 Perovskite Films via Crystal Surface Energy Regulation for Efficient and Stable Inverted Perovskite Photovoltaics

Wenhuai Feng et al.Jul 7, 2024
Photoactive formamidinium lead triiodide (α‐FAPbI3) perovskite has dominated the prevailing high‐performance perovskite solar cells (PSCs), normally for those spin‐coated, conventional n‐i‐p structured devices. Unfortunately, α‐FAPbI3 has not been made full use of its advantages in inverted p‐i‐n structured PSCs fabricated via blade‐coating techniques owing to uncontrollable crystallization kinetics and complicated phase evolution of FAPbI3 perovskites. Herein, a customized crystal surface energy regulation strategy has been innovatively developed by incorporating 0.5 mol% of N‐aminoethylpiperazine hydroiodide (NAPI) additive into α‐FAPbI3 crystal‐derived perovskite ink, which enabled the formation of phase‐pure, highly‐oriented α‐FAPbI3 films. We deciphered the phase transformation mechanisms and crystallization kinetics of blade‐coated α‐FAPbI3 perovskite films via combining a series of in‐situ characterizations. Interestingly, the strong chemical interactions between the NAPI and inorganic Pb‐I framework help to reduce the surface energy of (100) crystal plane by 42%, retard the crystallization rate and lower the formation energy of α‐FAPbI3. The resultant blade‐coated inverted PSCs based on (100)‐oriented α‐FAPbI3 perovskite films realized promising efficiencies up to 24.16% (~26.5% higher than that of the randomly‐oriented counterparts), accompanied by improved operational stability. This result represented one of the best performances reported to date for FAPbI3‐based inverted PSCs fabricated via scalable deposition methods.
0

Halogen Radical‐Activated Perovskite‐Substrate Buried Heterointerface for Achieving Hole Transport Layer‐Free Tin‐Based Solar Cells with Efficiencies Surpassing 14%

Gengling Liu et al.Nov 18, 2024
Sn‐based perovskites have emerged as one of the most promising environmentally‐friendly photovoltaic materials. Nonetheless, the low‐cost production and stable operation of Sn‐based perovskite solar cells (PSCs) are still limited by the costly hole transport layer (HTL) and the under‐optimized interfacial carrier dynamics. Here, we innovatively developed a halogen radical chemical bridging strategy that enabled to remove the HTL and optimize the perovskite‐substrate heterointerface for constructing high‐performance, simplified Sn‐based PSCs. The modification of ITO electrode by highly active chlorine radicals could effectively mitigate the surface oxygen vacancies, alter the chemical constitutions, and favorably down‐shifted the work function of ITO surface to be close to the valence band of perovskites. As a result, the interfacial energy barrier was reduced by 0.20 eV and the carrier dynamics were optimized at the ITO/perovskite heterointerface. Encouragingly, the efficiency of HTL‐free Sn‐based PSCs was enhanced from 6.79% to 14.20%, representing the record performance for the Sn perovskite photovoltaics in the absence of HTL. Notably, the target device exhibited enhanced stability for 2000 h. The Cl‐RCB strategy is also versatile to construct Pb‐based and mixed Sn‐Pb HTL‐free PSCs, achieving efficiencies of 22.27% and 21.13%, respectively, all representing the advanced device performances for the carrier transport layer‐free PSCs.
0

Halogen Radical‐Activated Perovskite‐Substrate Buried Heterointerface for Achieving Hole Transport Layer‐Free Tin‐Based Solar Cells with Efficiencies Surpassing 14%

Gengling Liu et al.Nov 18, 2024
Sn-based perovskites have emerged as one of the most promising environmentally-friendly photovoltaic materials. Nonetheless, the low-cost production and stable operation of Sn-based perovskite solar cells (PSCs) are still limited by the costly hole transport layer (HTL) and the under-optimized interfacial carrier dynamics. Here, we innovatively developed a halogen radical chemical bridging strategy that enabled to remove the HTL and optimize the perovskite-substrate heterointerface for constructing high-performance, simplified Sn-based PSCs. The modification of ITO electrode by highly active chlorine radicals could effectively mitigate the surface oxygen vacancies, alter the chemical constitutions, and favorably down-shifted the work function of ITO surface to be close to the valence band of perovskites. As a result, the interfacial energy barrier was reduced by 0.20 eV and the carrier dynamics were optimized at the ITO/perovskite heterointerface. Encouragingly, the efficiency of HTL-free Sn-based PSCs was enhanced from 6.79% to 14.20%, representing the record performance for the Sn perovskite photovoltaics in the absence of HTL. Notably, the target device exhibited enhanced stability for 2000 h. The Cl-RCB strategy is also versatile to construct Pb-based and mixed Sn-Pb HTL-free PSCs, achieving efficiencies of 22.27% and 21.13%, respectively, all representing the advanced device performances for the carrier transport layer-free PSCs.
0
0
Save