RL
Ren Liu
Author with expertise in Neural Interface Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
279
h-index:
21
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
45

In situelectro-sequencing in three-dimensional tissues

Qiang Li et al.Apr 23, 2021
Abstract Pairwise mapping of single-cell gene expression and electrophysiology in intact three-dimensional (3D) tissues is crucial for studying electrogenic organs ( e.g. , brain and heart) 1–5 . Here, we introduce in situ electro-sequencing (electro-seq), combining soft bioelectronics with in situ RNA sequencing to stably map millisecond-timescale cellular electrophysiology and simultaneously profile a large number of genes at single-cell level across 3D tissues. We applied in situ electro-seq to 3D human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) patches, precisely registering the CM gene expression with electrophysiology at single-cell level, enabling multimodal in situ analysis. Such multimodal data integration substantially improved the dissection of cell types and the reconstruction of developmental trajectory from spatially heterogeneous tissues. Using machine learning (ML)-based cross-modal analysis, in situ electro-seq identified the gene-to-electrophysiology relationship over the time course of cardiac maturation. Further leveraging such a relationship to train a coupled autoencoder, we demonstrated the prediction of single-cell gene expression profile evolution using long-term electrical measurement from the same cardiac patch or 3D millimeter-scale cardiac organoids. As exemplified by cardiac tissue maturation, in situ electro-seq will be broadly applicable to create spatiotemporal multimodal maps and predictive models in electrogenic organs, allowing discovery of cell types and gene programs responsible for electrophysiological function and dysfunction.
45
Citation8
0
Save
15

A method for three-dimensional single-cell chronic electrophysiology from developing brain organoids

Paul Floch et al.Jun 22, 2021
Abstract Human induced pluripotent stem cell-derived brain organoids have shown great potential for studies of human brain development and neurological disorders. However, quantifying the evolution and development of electrical functions in brain organoids is currently limited by measurement techniques that cannot provide long-term stable three-dimensional (3D) bioelectrical interfaces with brain organoids during development. Here, we report a cyborg brain organoid platform, in which 2D progenitor or stem cell sheets can fold “tissue-like” stretchable mesh nanoelectronics through organogenesis, distributing stretchable electrode arrays across 3D organoids. The tissue-wide integrated stretchable electrode arrays show no interruption to neuronal differentiation, adapt to the volume and morphological changes during organogenesis, and provide long-term stable electrical contacts with neurons within brain organoids during development. The seamless and non-invasive coupling of electrodes to neurons enables a 6-month continuous recording of the same brain organoids and captures the emergence of single-cell action potentials from early-stage brain organoid development.
15
Citation5
0
Save
1

An AI-Cyborg System for Adaptive Intelligent Modulation of Organoid Maturation

Ren Liu et al.Dec 12, 2024
Abstract Recent advancements in flexible bioelectronics have enabled continuous, long-term stable interrogation and intervention of biological systems. However, effectively utilizing the interrogated data to modulate biological systems to achieve specific biomedical and biological goals remains a challenge. In this study, we introduce an AI-driven bioelectronics system that integrates tissue-like, flexible bioelectronics with cyber learning algorithms to create a long-term, real-time bidirectional b ioelectronic interface with o ptimized a daptive intelligent m odulation (BIO-AIM). When integrated with biological systems as an AI-cyborg system, BIO-AIM continuously adapts and optimizes stimulation parameters based on stable cell state mapping, allowing for real-time, closed-loop feedback through tissue-embedded flexible electrode arrays. Applied to human pluripotent stem cell-derived cardiac organoids, BIO-AIM identifies optimized stimulation conditions that accelerate functional maturation. The effectiveness of this approach is validated through enhanced extracellular spike waveforms, increased conduction velocity, and improved sarcomere organization, outperforming both fixed and no stimulation conditions.
0

Low-Power Fully Integrated 256-Channel Nanowire Electrode-on-Chip Neural Interface for Intracellular Electrophysiology

Jun Wang et al.Jan 1, 2024
Intracellular electrophysiology, a vital and versatile technique in cellular neuroscience, is typically conducted using the patch-clamp method. Despite its effectiveness, this method poses challenges due to its complexity and low throughput. The pursuit of multi-channel parallel neural intracellular recording has been a long-standing goal, yet achieving reliable and consistent scaling has been elusive because of several technological barriers. In this work, we introduce a micropower integrated circuit, optimized for scalable, high-throughput in vitro intrinsically intracellular electrophysiology. This system is capable of simultaneous recording and stimulation, implementing all essential functions such as signal amplification, acquisition, and control, with a direct interface to electrodes integrated on the chip. The electrophysiology system-on-chip (eSoC), fabricated in 180nm CMOS, measures 2.236 mm × 2.236 mm. It contains four 8 × 8 arrays of nanowire electrodes, each with a 50 μm pitch, placed over the top-metal layer on the chip surface, totaling 256 channels. Each channel has a power consumption of 0.47 μW, suitable for current stimulation and voltage recording, and covers 80 dB adjustable range at a sampling rate of 25 kHz. Experimental recordings with the eSoC from cultured neurons in vitro validate its functionality in accurately resolving chemically induced multi-unit intracellular electrical activity.
0

Brain implantation of tissue-level-soft bioelectronics 1 via embryonic development

Hao Sheng et al.Jun 2, 2024
Abstract The design of bioelectronics capable of stably tracking brain-wide, single-cell, and millisecond-resolved neural activities in the developing brain is critical to the study of neuroscience and neurodevelopmental disorders. During development, the three-dimensional (3D) structure of the vertebrate brain arises from a 2D neural plate 1,2 . These large morphological changes previously posed a challenge for implantable bioelectronics to track neural activity throughout brain development 3–9 . Here, we present a tissue-level-soft, sub-micrometer-thick, stretchable mesh microelectrode array capable of integrating into the embryonic neural plate of vertebrates by leveraging the 2D-to-3D reconfiguration process of the tissue itself. Driven by the expansion and folding processes of organogenesis, the stretchable mesh electrode array deforms, stretches, and distributes throughout the entire brain, fully integrating into the 3D tissue structure. Immunostaining, gene expression analysis, and behavioral testing show no discernible impact on brain development or function. The embedded electrode array enables long-term, stable, brain-wide, single-unit-single-spike-resolved electrical mapping throughout brain development, illustrating how neural electrical activities and population dynamics emerge and evolve during brain development.