A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
YC
Yadong Chen
Author with expertise in Image Feature Retrieval and Recognition Techniques
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
14
(14% Open Access)
Cited by:
0
h-index:
32
/
i10-index:
101
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Prediction of blood‐brain barrier permeability using machine learning approaches based on various molecular representation

Li Liang et al.Jun 12, 2024
The assessment of compound blood-brain barrier (BBB) permeability poses a significant challenge in the discovery of drugs targeting the central nervous system. Conventional experimental approaches to measure BBB permeability are labor-intensive, cost-ineffective, and time-consuming. In this study, we constructed six machine learning classification models by combining various machine learning algorithms and molecular representations. The model based on ExtraTree algorithm and random partitioning strategy obtains the best prediction result, with AUC value of 0.932±0.004 and balanced accuracy (BA) of 0.837±0.010 for the test set. We employed the SHAP method to identify important features associated with BBB permeability. In addition, matched molecular pair (MMP) analysis and representative substructure derivation method were utilized to uncover the transformation rules and distinctive structural features of BBB permeable compounds. The machine learning models proposed in this work can serve as an effective tool for assessing BBB permeability in the drug discovery for central nervous system disease.
0

CGPDTA: An Explainable Transfer Learning‐Based Predictor With Molecule Substructure Graph for Drug‐Target Binding Affinity

Qing Fan et al.Dec 9, 2024
ABSTRACT Identifying interactions between drugs and targets is crucial for drug discovery and development. Nevertheless, the determination of drug‐target binding affinities (DTAs) through traditional experimental methods is a time‐consuming process. Conventional approaches to predicting drug‐target interactions (DTIs) frequently prove inadequate due to an insufficient representation of drugs and targets, resulting in ineffective feature capture and questionable interpretability of results. To address these challenges, we introduce CGPDTA, a novel deep learning framework empowered by transfer learning, designed explicitly for the accurate prediction of DTAs. CGPDTA leverages the complementarity of drug–drug and protein–protein interaction knowledge through advanced drug and protein language models. It further enhances predictive capability and interpretability by incorporating molecular substructure graphs and protein pocket sequences to represent local features of drugs and targets effectively. Our findings demonstrate that CGPDTA not only outperforms existing methods in accuracy but also provides meaningful insights into the predictive process, marking a significant advancement in the field of drug discovery.
Load More