PL
Pengxin Liu
Author with expertise in Catalytic Reduction of Nitro Compounds
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(42% Open Access)
Cited by:
3,794
h-index:
22
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Surface Coordination Chemistry of Metal Nanomaterials

Pengxin Liu et al.Jan 13, 2017
Surface coordination chemistry of nanomaterials deals with the chemistry on how ligands are coordinated on their surface metal atoms and influence their properties at the molecular level. This Perspective demonstrates that there is a strong link between surface coordination chemistry and the shape-controlled synthesis, and many intriguing surface properties of metal nanomaterials. While small adsorbates introduced in the synthesis can control the shapes of metal nanocrystals by minimizing their surface energy via preferential coordination on specific facets, surface ligands properly coordinated on metal nanoparticles readily promote their catalysis via steric interactions and electronic modifications. The difficulty in the research of surface coordination chemistry of nanomaterials mainly lies in the lack of effective tools to characterize their molecular surface coordination structures. Also highlighted are several model material systems that facilitate the characterizations of surface coordination structures, including ultrathin nanostructures, atomically precise metal nanoclusters, and atomically dispersed metal catalysts. With the understanding of surface coordination chemistry, the molecular mechanisms behind various important effects (e.g., promotional effect of surface ligands on catalysis, support effect in supported metal nanocatalysts) of metal nanomaterials are disclosed.
0

A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres

Xiaoliang Fang et al.Jan 1, 2011
Hollow mesoporous silica spheres have recently attracted increasing attention. However, effective synthesis of uniform hollow mesoporous spheres with controllable well-defined pore structures for fundamental research and practical applications has remained a significant challenge. In this work, a straightforward and effective “cationic surfactant assisted selective etching” synthetic strategy was developed for the preparation of high-quality hollow mesoporous silica spheres with either wormhole-like or oriented mesoporous shell. The as-prepared hollow mesoporous silica spheres have large surface area, high pore volume, and controllable structure parameters. Our experiments demonstrated that cationic surfactant plays critical roles in forming the hollow mesoporous structure. A formation mechanism involving the etching of solid SiO2 accelerated by cationic surfactant followed by the redeposition of dissolved silica species directed by cationic surfactant is proposed. Furthermore, the strategy can be extended as a general strategy to transform silica-coated composite materials into yolk-shell structures with either wormhole-like or oriented mesoporous shell.
0

Hollow Mesoporous Aluminosilica Spheres with Perpendicular Pore Channels as Catalytic Nanoreactors

Xiaoliang Fang et al.Apr 13, 2012
The design and synthesis of hollow/yolk-shell mesoporous structures with catalytically active ordered mesoporous shells can infuse new vitality into the applications of these attractive structures. In this study, we report that hollow/yolk-shell structures with catalytically active ordered mesoporous aluminosilica shells can be easily prepared by using silica spheres as the silica precursors. By simply treating with a hot alkaline solution in the presence of sodium aluminate (NaAlO2) and cetyltrimethylammonium bromide (CTAB), solid silica spheres can be directly converted into high-quality hollow mesoporous aluminosilica spheres with perpendicular pore channels. On the basis of the proposed formation mechanism of etching followed by co-assembly, the synthesis strategy developed in this work can be extended as a general strategy to prepare ordered mesoporous yolk-shell structures with diverse compositions and morphologies simply by replacing solid silica spheres with silica-coated nanocomposites. The reduction of 4-nitrophenol with yolk-shell structured Au@ordered mesoporous aluminosilica as the catalyst has clearly demonstrated that the highly permeable perpendicular pore channels of mesoporous aluminosilica can effectively prevent the catalytically active yolk from aggregating. Furthermore, with accessible acidity, the yolk-shell structured ordered mesoporous aluminosilica spheres containing Pd yolk exhibit high catalytic activity and recyclability in a one-pot two-step synthesis involving an acid catalysis and subsequent catalytic hydrogenation for desired benzimidazole derivative, which makes the proposed hollow ordered aluminosilica spheres a versatile and practicable scaffold for advanced catalytic nanoreactor systems.
Load More