JH
Jie He
Author with expertise in Global Cancer Incidence and Mortality Patterns
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
1,942
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Changing cancer survival in China during 2003–15: a pooled analysis of 17 population-based cancer registries

Hongmei Zeng et al.Apr 10, 2018

Summary

Background

 From 2003 to 2005, standardised 5-year cancer survival in China was much lower than in developed countries and varied substantially by geographical area. Monitoring population-level cancer survival is crucial to the understanding of the overall effectiveness of cancer care. We therefore aimed to investigate survival statistics for people with cancer in China between 2003 and 2015. 

Methods

 We used population-based data from 17 cancer registries in China. Data for the study population was submitted by the end of July 31, 2016, with follow-up data on vital status obtained on Dec 31, 2015. We used anonymised, individual cancer registration records of patients (aged 0–99 years) diagnosed with primary, invasive cancers from 2003 to 2013. Patients eligible for inclusion had data for demographic characteristics, date of diagnosis, anatomical site, morphology, behaviour code, vital status, and last date of contact. We analysed 5-year relative survival by sex, age, and geographical area, for all cancers combined and 26 different cancer types, between 2003 and 2015. We stratified survival estimates by calendar period (2003–05, 2006–08, 2009–11, and 2012–15). 

Findings

 There were 678 842 records of patients with invasive cancer who were diagnosed between 2003 and 2013. Of these records, 659 732 (97·2%) were eligible for inclusion in the final analyses. From 2003–05 to 2012–15, age-standardised 5-year relative survival increased substantially for all cancers combined, for both male and female patients, from 30·9% (95% CI 30·6–31·2) to 40·5% (40·3–40·7). Age-standardised 5-year relative survival also increased for most cancer types, including cancers of the uterus (average change per calendar period 5·5% [95% CI 2·5–8·5]), thyroid (5·4% [3·2–7·6]), cervix (4·5% [2·9–6·2]), and bone (3·2% [2·1–4·4]). In 2012–15, age-standardised 5-year survival for all patients with cancer was higher in urban areas (46·7%, 95% CI 46·5–47·0) than in rural areas (33·6%, 33·3–33·9), except for patients with oesophageal or cervical cancer; but improvements in survival were greater for patients residing in rural areas than in urban areas. Relative survival decreased with increasing age. The increasing trends in survival were consistent with the upward trends of medical expenditure of the country during the period studied. 

Interpretation

 There was a marked overall increase in cancer survival from 2003 to 2015 in the population covered by these cancer registries in China, possibly reflecting advances in the quality of cancer care in these areas. The survival gap between urban and rural areas narrowed over time, although geographical differences in cancer survival remained. Insight into these trends will help prioritise areas that need increased cancer care. 

Funding

 National Key R&D Program of China, PUMC Youth Fund and the Fundamental Research Funds for the Central Universities, and Major State Basic Innovation Program of the Chinese Academy of Medical Sciences.
0
Citation1,084
0
Save
0

Report of incidence and mortality in China cancer registries, 2009.

Wanqing Chen et al.Feb 1, 2013
The National Central Cancer Registry (NCCR) collected cancer registration data in 2009 from local cancer registries in 2012, and analyzed to describe cancer incidence and mortality in China.On basis of the criteria of data quality from NCCR, data submitted from 104 registries were checked and evaluated. There were 72 registries' data qualified and accepted for cancer registry annual report in 2012. Descriptive analysis included incidence and mortality stratified by area (urban/rural), sex, age group and cancer site. The top 10 common cancers in different groups, proportion and cumulative rates were also calculated. Chinese population census in 1982 and Segi's population were used for age-standardized incidence/mortality rates.All 72 cancer registries covered a total of 85,470,522 population (57,489,009 in urban and 27,981,513 in rural areas). The total new cancer incident cases and cancer deaths were 244,366 and 154,310, respectively. The morphology verified cases accounted for 67.23%, and 3.14% of incident cases only had information from death certifications. The crude incidence rate in Chinese cancer registration areas was 285.91/100,000 (males 317.97/100,000, females 253.09/100,000), age-standardized incidence rates by Chinese standard population (ASIRC) and by world standard population (ASIRW) were 146.87/100,000 and 191.72/100,000 with the cumulative incidence rate (0-74 age years old) of 22.08%. The cancer incidence and ASIRC were 303.39/100,000 and 150.31/100,000 in urban areas whereas in rural areas, they were 249.98/100,000 and 139.68/100,000, respectively. The cancer mortality in Chinese cancer registration areas was 180.54/100,000 (224.20/100,000 in males and 135.85/100,000 in females), age-standardized mortality rates by Chinese standard population (ASMRC) and by world standard population (ASMRW) were 85.06/100,000 and 115.65/100,000, and the cumulative incidence rate (0-74 age years old) was 12.94%. The cancer mortality and ASMRC were 181.86/100,000 and 80.86/100,000 in urban areas, whereas in rural areas, they were 177.83/100,000 and 94.40/100,000 respectively. Lung cancer, gastric cancer, colorectal cancer, liver cancer, esophageal cancer, pancreas cancer, encephaloma, lymphoma, female breast cancer and cervical cancer, were the most common cancers, accounting for 75% of all cancer cases in urban and rural areas. Lung cancer, gastric cancer, liver cancer, esophageal cancer, colorectal cancer, pancreatic cancer, breast cancer, encephaloma, leukemia and lymphoma accounted for 80% of all cancer deaths. The cancer spectrum showed difference between urban and rural areas, males and females. The main cancers in rural areas were cancers of the stomach, followed by esophageal cancer, lung cancer, liver cancer and colorectal cancer, whereas the main cancer in urban areas was lung cancer, followed by liver cancer, gastric cancer and colorectal cancer.The coverage of cancer registration population has been increasing and data quality is improving. As the basis of cancer control program, cancer registry plays an important role in making anti-cancer strategy in medium and long term. As cancer burdens are different between urban and rural areas in China, prevention and control should be implemented based on practical situation.
0
Citation260
0
Save
0

Cancer incidence and mortality in China in 2013: an analysis based on urbanization level

Wanqing Chen et al.Jan 1, 2017
Abstract Objective: To explore the cancer patterns in areas with different urbanization rates (URR) in China with data from 255 population-based cancer registries in 2013, collected by the National Central Cancer Registry (NCCR). Methods: There were 347 cancer registries submitted cancer incidence and deaths occurred in 2013 to NCCR. All those data were checked and evaluated based on the NCCR criteria of data quality, and qualified data from 255 registries were used for this analysis. According to the proportion of non-agricultural population, we divided cities/counties into 3 levels: high level, with URR equal to 70% and higher; median level, with URR between 30% and 70%; and low level, with URR equal to 30% and less. Cancer incidences and mortalities were calculated, stratified by gender and age groups in different areas. The national population of Fifth Census in 2000 and Segi's population were applied for age-standardized rates. Results: Qualified 255 cancer registries covered 226,494,490 populations. The percentage of cases morphologically verified (MV%) and death certificate-only cases (DCO%) were 68.04% and 1.74%, respectively, and the mortality to incidence rate ratio (M/I) was 0.62. A total of 644,487 new cancer cases and 399,275 cancer deaths from the 255 cancer registries were submitted to NCCR in 2013. The incidence rate was 284.55/100,000 (314.06/100,000 in males, 254.19/100,000 in females), and the age-standardized incidence rates by Chinese standard population (ASIRC) and by world standard population (ASIRW) were 190.10/100,000 and 186.24/100,000 with the cumulative incidence rate (0−74 age years old) of 21.60%. The cancer mortality was 176.28/100,000 (219.03/100,000 in males, 132.30/100,000 in females), and the age-standardized mortality rates by Chinese standard population (ASMRC) and by world standard population (ASMRW) were 110.91/100,000 and 109.92/100,000, and the cumulative mortality rate (0−74 age years old) was 12.43%. Low urbanization areas were high in crude cancer incidence and mortality rates, middle urbanization areas came next to it followed by high urbanization areas. After adjusted by age, there was a U-shaped association between age-standardized incidence (ASIRC and ASIRW) and the urbanized ratio with the middle urbanization areas having the lowest ASIRC and ASIRW. Unlike with the age-standardized incidence, the sort order of age-standardized mortality (ASMRC and ASMRW) among three urbanization areas was reversed completely from the crude mortality. Lung cancer was the most common cancer in all areas of 255 cancer registries, followed by stomach cancer, liver cancer, colorectal cancer and esophageal cancer with new cases of 130,700, 76,200, 63,800, 60,900 and 50,200 respectively. Lung cancer was also the leading cause of cancer death in all areas of 255 cancer registries for both males and females with the number of deaths of 72,200 and 34,100, respectively. Other cancer types with high mortality in males were liver cancer, stomach cancer, esophageal cancer and colorectal cancer. In females, stomach cancer was the second cause of cancer death, followed by liver cancer, colorectal cancer and breast cancer. Conclusions: Along with the development of socioeconomics associated with urbanization, as well as the aging population, the incidence and mortality keep increasing in China. Cancer burden and patterns are different in each urbanization level. Cancer control strategies should be implemented referring to local urbanization status.
0
Paper
Citation226
0
Save
0

The sparing effect of ultra-high dose rate irradiation on the esophagus

Wenting Ren et al.Jul 12, 2024
Background and purpose Current studies have substantiated the sparing effect of ultra-high dose rate irradiation (FLASH) in various organs including the brain, lungs, and intestines. Whether this sparing effect extends to esophageal tissue remains unexplored. This study aims to compare the different responses of esophageal tissue in histological and protein expression levels following conventional dose rate irradiation (CONV) and FLASH irradiation to ascertain the presence of a sparing effect. Methods and materials C57 female mice were randomly divided into three groups: control, CONV, and FLASH groups. The chest region of the mice in the radiation groups was exposed to a prescribed dose of 20 Gy using a modified electron linear accelerator. The CONV group received an average dose rate of 0.1 Gy/s, while the FLASH group received an average dose rate of 125 Gy/s. On the 10th day after irradiation, the mice were euthanized and their esophagi were collected for histopathological analysis. Subsequently, label-free proteomic quantification analysis was performed on esophageal tissue. The validation process involved analyzing transmission electron microscopy images and utilizing the parallel reaction monitoring method. Results Histopathology results indicated a significantly lower extent of esophageal tissue damage in the FLASH group compared to the CONV group ( p &lt; 0.05). Label-free quantitative proteomic analysis revealed that the sparing effect observed in the FLASH group may be attributed to a reduction in radiation-induced protein damage associated with mitochondrial functions, including proteins involved in the tricarboxylic acid cycle and oxidative phosphorylation, as well as a decrease in acute inflammatory responses. Conclusions Compared with CONV irradiation, a sparing effect on esophageal tissue can be observed after FLASH irradiation. This sparing effect is associated with alleviated mitochondria damage and acute inflammation.