ZX
Zeyan Xu
Author with expertise in Radiomics in Medical Imaging Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
184
h-index:
12
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer

Ke Zhao et al.Oct 8, 2020
BackgroundAn artificial intelligence method could accelerate the clinical implementation of tumour-stroma ratio (TSR), which has prognostic relevance in colorectal cancer (CRC). We, therefore, developed a deep learning model for the fully automated TSR quantification on routine haematoxylin and eosin (HE) stained whole-slide images (WSI) and further investigated its prognostic validity for patient stratification.MethodsWe trained a convolutional neural network (CNN) model using transfer learning, with its nine-class tissue classification performance evaluated in two independent test sets. Patch-level segmentation on WSI HE slides was performed using the model, with TSR subsequently derived. A discovery (N=499) and validation cohort (N=315) were used to evaluate the prognostic value of TSR for overall survival (OS).FindingsThe CNN-quantified TSR was a prognostic factor, independently of other clinicopathologic characteristics, with stroma-high associated with reduced OS in the discovery (HR 1.72, 95% CI 1.24-2.37, P=0.001) and validation cohort (2.08, 1.26-3.42, 0.004). Integrating TSR into a Cox model with other risk factors showed improved prognostic capability.InterpretationWe developed a deep learning model to quantify TSR based on histologic WSI of CRC and demonstrated its prognostic validity for patient stratification for OS in two independent CRC patient cohorts. This fully automatic approach allows for the objective and standardised application while reducing pathologists' workload. Thus, it can potentially be of significant aid in clinical prognosis prediction and decision-making.FundingNational Key Research and Development Program of China, National Science Fund for Distinguished Young Scholar, and National Science Foundation for Young Scientists of China.
0

A deep learning quantified stroma-immune score to predict survival of patients with stage II–III colorectal cancer

Zeyan Xu et al.Oct 30, 2021
Profound heterogeneity in prognosis has been observed in colorectal cancer (CRC) patients with intermediate levels of disease (stage II-III), advocating the identification of valuable biomarkers that could improve the prognostic stratification. This study aims to develop a deep learning-based pipeline for fully automatic quantification of immune infiltration within the stroma region on immunohistochemical (IHC) whole-slide images (WSIs) and further analyze its prognostic value in CRC.Patients from two independent cohorts were divided into three groups: the development group (N = 200), the internal (N = 134), and the external validation group (N = 90). We trained a convolutional neural network for tissue classification of CD3 and CD8 stained WSIs. A scoring system, named stroma-immune score, was established by quantifying the density of CD3+ and CD8+ T-cells infiltration in the stroma region.Patients with higher stroma-immune scores had much longer survival. In the development group, 5-year survival rates of the low and high scores were 55.7% and 80.8% (hazard ratio [HR] for high vs. low 0.39, 95% confidence interval [CI] 0.24-0.63, P < 0.001). These results were confirmed in the internal and external validation groups with 5-year survival rates of low and high scores were 57.1% and 78.8%, 63.9% and 88.9%, respectively (internal: HR for high vs. low 0.49, 95% CI 0.28-0.88, P = 0.017; external: HR for high vs. low 0.35, 95% CI 0.15-0.83, P = 0.018). The combination of stroma-immune score and tumor-node-metastasis (TNM) stage showed better discrimination ability for survival prediction than using the TNM stage alone.We proposed a stroma-immune score via a deep learning-based pipeline to quantify CD3+ and CD8+ T-cells densities within the stroma region on WSIs of CRC and further predict survival.
0
Citation23
0
Save
0

Prognostic value of a modified Immunosocre in patients with stage I−III resectable colon cancer

Ke Zhao et al.Jan 1, 2021
ObjectiveThe Immunoscore method has proved fruitful for predicting prognosis in patients with colon cancer. However, there is still room for improvement in this scoring method to achieve further advances in its clinical translation. This study aimed to develop and validate a modified Immunoscore (IS-mod) system for predicting overall survival (OS) in patients with stage I−III colon cancer.MethodsThe IS-mod was proposed by counting CD3+ and CD8+ immune cells in regions of the tumor core and its invasive margin by drawing two lines of interest. A discovery cohort (N=212) and validation cohort (N=103) from two centers were used to evaluate the prognostic value of the IS-mod.ResultsIn the discovery cohort, 5-year survival rates were 88.6% in the high IS-mod group and 60.7% in the low IS-mod group. Multivariate analysis confirmed that the IS-mod was an independent prognostic factor for OS [adjusted hazard ratio (HR)=0.36, 95% confidence interval (95% CI): 0.20−0.63]. With less annotation and computation cost, the IS-mod achieved performance comparable to that of the Immunoscore-like (IS-like) system (C-index, 0.676 vs. 0.661, P=0.231). The 2-category IS-mod using 47.5% as the threshold had a better prognostic value than that using a fixed threshold of 25% (C-index, 0.653 vs. 0.573, P=0.004). Similar results were confirmed in the validation cohort. ConclusionsOur method simplifies the annotation and accelerates the calculation of Immunoscore method, thus making it easier for clinical implementation. The IS-mod achieved comparable prognostic performance when compared to the IS-like system in both cohorts. Besides, we further found that even with a small reference set (N≥120), the IS-mod still demonstrated a stable prognostic value. This finding may inspire other institutions to develop a local reference set of an IS-mod system for more accurate risk stratification of colon cancer.
0
Citation10
0
Save
0

Deep learning quantified mucus-tumor ratio predicting survival of patients with colorectal cancer using whole-slide images

Ke Zhao et al.Jan 28, 2021
Abstract Background In colorectal cancer (CRC), mucinous adenocarcinoma differs from other adenocarcinomas in gene-phenotype, morphology, and prognosis. However, mucinous components are present in a large number of adenocarcinomas, and the prognostic value of mucus proportion has not been investigated. Artificial intelligence provides a way to quantify mucus proportion on whole-slide images (WSIs) accurately. We aimed to quantify mucus proportion by deep learning and further investigate its prognostic value in two CRC patient cohorts. Methods Deep learning was used to segment WSIs stained with hematoxylin and eosin. Mucus-tumor ratio (MTR) was defined as the proportion of mucinous component in the tumor area. A training cohort (N = 419) and a validation cohort (N = 315) were used to evaluate the prognostic value of MTR. Survival analysis was performed using the Cox proportional hazard model. Result Patients were stratified to mucus-low and mucus-high groups, with 24.1% as the threshold. In the training cohort, patients with mucus-high had unfavorable outcomes (hazard ratio for high vs. low 1.88, 95% confidence interval 1.18–2.99, P = 0.008), with 5-year overall survival rates of 54.8% and 73.7% in mucus-high and mucus-low groups, respectively. The results were confirmed in the validation cohort (2.09, 1.21–3.60, 0.008; 62.8% vs. 79.8%). The prognostic value of MTR was maintained in multivariate analysis for both cohorts. Conclusion The deep learning quantified MTR was an independent prognostic factor in CRC. With the advantages of advanced efficiency and high consistency, our method is suitable for clinical application and promotes precision medicine development.
0
Paper
Citation8
0
Save
0

Predicting Neoadjuvant Chemoradiotherapy Response in Locally Advanced Rectal Cancer Using Tumor-Infiltrating Lymphocytes Density

Yao Xu et al.Nov 1, 2021
Purpose: Accumulating evidence revealed the predictive value of tumor-infiltrating lymphocytes (TILs) for neoadjuvant chemoradiotherapy (nCRT) response in solid tumors. This study quantified TILs density using hematoxylin and eosin (H&E) stained whole-slide images (WSIs) and investigated the predictive value of TILs density on nCRT response in locally advanced rectal cancer (LARC) patients. Patients and Methods: Two hundred and ten patients diagnosed with LARC were enrolled in this study. The density of TILs in the stroma region was quantified by a semi-automatic method in WSIs. Patients were stratified into low-TILs and high-TILs groups using the median value as the threshold. The tumor regression grade (TRG) was used to assess the response to nCRT in tumor resected specimens. Based on TRG, patients were classified into major-responder (TRG 0– 1) and non-responder (TRG 2– 3) groups. Results: The TILs density was significantly correlated with the nCRT response. Specifically, patients with high-TILs tend to have a higher major-responder rate than the low-TILs group (63.8% vs 47.6%, P = 0.026). Univariate analysis showed the TILs density was a predictor for the nCRT response (high vs low, odds ratio [OR] =1.94, 95% confidence interval 1.12– 3.37, P = 0.019), and multivariate analysis further confirmed the correlation (adjusted odds ratio [AOR] = 2.41, 1.28– 4.56, P = 0.007). Conclusion: Patients with a high-TIL density have a higher major-responder rate than the low-TILs group, indicating patients with a strong immune response benefit more from nCRT. This semi-automatic method can facilitate the individualized preoperative prediction of the TRG for LARC patients before nCRT. Keywords: tumor-infiltrating lymphocytes, locally advanced rectal cancer, neoadjuvant chemoradiotherapy response, tumor regression grade, digital pathology
0
Citation5
0
Save
Load More