HF
Hui Feng
Author with expertise in Synthesis and Applications of Carbon Quantum Dots
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(17% Open Access)
Cited by:
2,130
h-index:
52
/
i10-index:
128
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Highly Luminescent N‐Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform

Zhaosheng Qian et al.Jan 21, 2014
The doping of carbon quantum dots with nitrogen provides a promising direction to improve fluorescence performance and broaden their applications in sensing systems. Herein we report a one-pot solvothermal synthesis of N-doped carbon quantum dots (NCQDs) and the synthesis of a series of NCQDs with different nitrogen contents. The as-prepared NCQDs were compared with carbon quantum dots (CQDs); the introduction of nitrogen atoms largely increased the quantum yield of NCQDs and highest emission efficiency is up to 36.3 %. The fluorescence enhancement may originate from more polyaromatic structures induced by incorporated nitrogen atoms and protonation of nitrogen atoms on dots. It was found that NCQDs can act as a multifunctional fluorescence sensing platform because they can be used to detect pH values, Ag(I), and Fe(III) in aqueous solution. The fluorescence intensity of NCQDs is inversely proportional to pH values across a broad range from 5.0 to 13.5, which indicates that NCQDs can be devised as an effective pH indicator. Selective detection of Ag(I) and Fe(III) was achieved based on their distinctive fluorescence influence because Ag(I) can significantly enhance the fluorescence whereas Fe(III) can greatly quench the fluorescence. The quantitative determination of Ag(I) can be accomplished with NCQDs by using the linear relationship between fluorescence intensity of NCQDs and concentration of Ag(I). The sensitive detection of H2O2 was developed by taking advantage of the distinct quenching ability of Fe(III) and Fe(II) toward the fluorescence of NCQDs. Cellular toxicity test showed NCQDs still retain low toxicity to cells despite the introduction of a great deal of nitrogen atoms. Moreover, bioimaging experiments demonstrated that NCQDs have stronger resistance to photobleaching than CQDs and more excellent fluorescence labeling performance.
0

Si-Doped Carbon Quantum Dots: A Facile and General Preparation Strategy, Bioimaging Application, and Multifunctional Sensor

Zhaosheng Qian et al.Apr 8, 2014
Heteroatom doping of carbon quantum dots not only enables great improvement of fluorescence efficiency and tunability of fluorescence emission, but also provides active sites in carbon dots to broaden their application in sensor. Silicon as a biocompatible element offers a promising direction for doping of carbon quantum dots. Si-doped carbon quantum dots (SiCQDs) were synthesized through a facile and effective approach. The as-prepared Si-doped carbon quantum dots possess visible fluorescence with high quantum yield up to 19.2%, owing to fluorescence enhancement effect of introduced silicon atoms into carbon dots. The toxicity test on human Hela cells showed that SiCQDs have lower cellular toxicity than common CQDs, and bioimaging experiments clearly demonstrated their excellent biolabelling ability and outstanding performance in resistance to photobleaching. Strong fluorescence quenching effect of Fe(III) on SiCQDs can be used for its selective detection among general metal ions. Specific electron transfer between SiCQDs and hydrogen peroxide enables SiCQDs as a sensitive fluorescence sensing platform for hydrogen peroxide. The subsequent fluorescence recovery induced by removal of hydrogen peroxide from SiCQDs due to formation of the stable adducts between hydrogen peroxide and melamine was taken advantage of to construct effective sensor for melamine.
0

Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation

Zhaosheng Qian et al.Jan 1, 2013
Surface chemistry provides an alternative approach to modulate the emission colour and efficiency of graphene quantum dots. We systematically investigated the surface chemistry of graphene quantum dots functionalized with a series of small organic molecules combining experimental and theoretical approaches. Experimental results indicated that surface functionalization with functional groups such as alcohol, amine and thiol can effectively tune the fluorescence of graphene quantum dots, and proved that amino groups can highly elevate the quantum yields of modified graphene quantum dots. The emission efficiency of 1,2-ethylenediamine functionalized graphene quantum dots reached up to 17.6% due to specific proton transfer to the conjugated fluorophore-like structure from ammonium formed by protonation. The polyaromatic structure within the graphene quantum dots was proposed to explain the fluorescence enhancement mechanism of graphene quantum dots functionalized by diamines. The computational results suggested that not only the size of the polyaromatic structures within graphene quantum dots can change their emissions, but surface functionalization can also tune their photoluminescence through modulating their band gaps. Toxicity experiments indicated that diamine-functionalized graphene quantum dots showed low cell toxicity similar to that of pristine graphene quantum dots. Moreover, the bioimaging experiments suggested that functionalized graphene quantum dots had identical abilities to label cells at a lower concentration than pristine graphene quantum dots owing to their higher quantum yields.
0

Carbon Quantum Dots-Based Recyclable Real-Time Fluorescence Assay for Alkaline Phosphatase with Adenosine Triphosphate as Substrate

Zhaosheng Qian et al.Feb 2, 2015
A convenient, reliable, and highly sensitive real-time assay for alkaline phosphatase (ALP) activity in the continuous and recyclable way is established on the basis of aggregation and disaggregation of carbon quantum dots (CQDs) through the competitive assay approach. CQDs and adenosine triphosphate (ATP) were used as the fluorescent indicator and substrate for ALP activity assessment, respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by cerium ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, ATP can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to cerium ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by redispersion of CQDs in the presence of ALP and ATP. Quantitative evaluation of ALP activity in a broad range from 4.6 to 383.3 U/L with the detection limit of 1.4 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. The assay can be used in a recyclable way for more than three times since the generated product CePO4 as a precipitate can be easily removed from the standard assay system. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility and provides an example based on disaggregation in optical probe development.
0
Paper
Citation197
0
Save
Load More