JE
J. Estrada
Author with expertise in Advancements in Particle Detector Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
1,862
h-index:
49
/
i10-index:
84
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SENSEI: Direct-Detection Constraints on Sub-GeV Dark Matter from a Shallow Underground Run Using a Prototype Skipper CCD

Orr Abramoff et al.Apr 24, 2019
We present new direct-detection constraints on eV-to-GeV dark matter interacting with electrons using a prototype detector of the Sub-Electron-Noise Skipper-CCD Experimental Instrument. The results are based on data taken in the MINOS cavern at the Fermi National Accelerator Laboratory. We focus on data obtained with two distinct readout strategies. For the first strategy, we read out the Skipper-CCD continuously, accumulating an exposure of 0.177 gram-days. While we observe no events containing three or more electrons, we find a large one- and two-electron background event rate, which we attribute to spurious events induced by the amplifier in the Skipper-CCD readout stage. For the second strategy, we take five sets of data in which we switch off all amplifiers while exposing the Skipper-CCD for 120k seconds, and then read out the data through the best prototype amplifier. We find a one-electron event rate of (3.51 +- 0.10) x 10^(-3) events/pixel/day, which is almost two orders of magnitude lower than the one-electron event rate observed in the continuous-readout data, and a two-electron event rate of (3.18 +0.86 -0.55) x 10^(-5) events/pixel/day. We again observe no events containing three or more electrons, for an exposure of 0.069 gram-days. We use these data to derive world-leading constraints on dark matter-electron scattering for masses between 500 keV to 5 MeV, and on dark-photon dark matter being absorbed by electrons for a range of masses below 12.4 eV.
0

SENSEI: First Direct-Detection Constraints on Sub-GeV Dark Matter from a Surface Run

M. Crisler et al.Aug 8, 2018
The Sub-Electron-Noise Skipper CCD Experimental Instrument (SENSEI) uses the recently developed Skipper-CCD technology to search for electron recoils from the interaction of sub-GeV dark matter particles with electrons in silicon. We report first results from a prototype SENSEI detector, which collected 0.019 g day of commissioning data above ground at Fermi National Accelerator Laboratory. These commissioning data are sufficient to set new direct-detection constraints for dark matter particles with masses between ∼500 keV and 4 MeV. Moreover, since these data were taken on the surface, they disfavor previously allowed strongly interacting dark matter particles with masses between ∼500 keV and a few hundred MeV. We discuss the implications of these data for several dark matter candidates, including one model proposed to explain the anomalously large 21-cm signal observed by the EDGES Collaboration. SENSEI is the first experiment dedicated to the search for electron recoils from dark matter, and these results demonstrate the power of the Skipper-CCD technology for dark matter searches.
0

Studying single-electron traps in newly fabricated Skipper-CCDs for the Oscura experiment using the pocket-pumping technique

Susana Pérez et al.Nov 25, 2024
Understanding and characterizing very low-energy (∼eV) background sources is a must in rare-event searches. Oscura, an experiment aiming to probe electron recoils from sub-GeV dark matter using a 10 kg skipper-CCD detector, has recently fabricated its first two batches of sensors. In this work, we present the characterization of defects/contaminants identified in the buried-channel region of these newly fabricated skipper-CCDs. These defects/contaminants produce deferred charge from trap emission in the images next to particle tracks, which can be spatially resolved due to the sub-electron resolution achieved with these sensors. Using the trap-pumping technique, we measured the energy and cross section associated with these traps in three Oscura prototype sensors from different fabrication batches which underwent different gettering methods during fabrication. Results suggest that the type of defects/contaminants is more closely linked to the fabrication batch rather than to the gettering method used. The exposure-dependent single-electron rate (SER) of one of these sensors was measured ∼100 m underground, yielding (1.8±0.3)×10−3e−/pix/day at 131 K. The impact of the identified traps on the measured exposure-dependent SER is evaluated via a Monte Carlo simulation. Results suggest that the exposure-dependent SER of Oscura prototype sensors would be lower in lower background environments as expected.