Safe drinking water is essential to a healthy lifestyle and has been recognised as a human right by numerous countries. However, the realisation of this right remains largely aspirational, particularly in impoverished nations that lack adequate resources for water quality testing. Kenya, a Sub-Saharan country, bears the brunt of this challenge. Pesticide imports in Kenya increased by 144% from 2015 to 2018, with sales data indicating that 76% of these pesticides are classified as highly hazardous. This trend continues to rise. Over 70% of Kenya’s population resides in rural areas, with 75% of the rural population engaged in agriculture and using pesticides. Agriculture is the country’s main economic activity, contributing over 30% of its gross domestic product (GDP). The situation is further exacerbated by the lack of monitoring for pesticide residues in surface water and groundwater, coupled with the absence of piped water infrastructure in rural areas. Consequently, contamination levels are high, as agricultural runoff is a major contaminant of surface water and groundwater. The increased use of pesticides to enhance agricultural productivity exacerbates environmental degradation and harms water ecosystems, adversely affecting public health. This study proposes the development of a wireless sensor system that utilizes radio-frequency identification (RFID), Long-range (LoRa) protocol and a global system for mobile communications (GSM) for monitoring pesticide prevalence in groundwater sources. From the system design, individuals with limited literacy skills, advanced age, or non-expert users can utilize it with ease. The reliability of the LoRa protocol in transmitting data packets is thoroughly investigated to ensure effective communication. The system features a user-friendly interface for straightforward data input and facilitates broader access to information by employing various remote wireless sensing methods.