RL
Ryan Lynch
Author with expertise in Observation and Study of Gravitational Waves Phenomenon
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(100% Open Access)
Cited by:
13,723
h-index:
77
/
i10-index:
183
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

B. Abbott et al.Jun 15, 2016
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 $\sigma$. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of $3.4_{-0.9}^{+0.7} \times 10^{-22}$. The inferred source-frame initial black hole masses are $14.2_{-3.7}^{+8.3} M_{\odot}$ and $7.5_{-2.3}^{+2.3} M_{\odot}$ and the final black hole mass is $20.8_{-1.7}^{+6.1} M_{\odot}$. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of $440_{-190}^{+180}$ Mpc corresponding to a redshift $0.09_{-0.04}^{+0.03}$. All uncertainties define a 90 % credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
0

A repeating fast radio burst

L. Spitler et al.Mar 1, 2016
Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.
0

The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background

Gabriella Agazie et al.Jun 29, 2023
We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings-Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background with a power-law-spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of $10^{14}$, and this same model is favored over an uncorrelated common power-law-spectrum model with Bayes factors of 200-1000, depending on spectral modeling choices. We have built a statistical background distribution for these latter Bayes factors using a method that removes inter-pulsar correlations from our data set, finding $p = 10^{-3}$ (approx. $3\sigma$) for the observed Bayes factors in the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields $p = 5 \times 10^{-5} - 1.9 \times 10^{-4}$ (approx. $3.5 - 4\sigma$). Assuming a fiducial $f^{-2/3}$ characteristic-strain spectrum, as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is $2.4^{+0.7}_{-0.6} \times 10^{-15}$ (median + 90% credible interval) at a reference frequency of 1/(1 yr). The inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black-hole binaries, although more exotic cosmological and astrophysical sources cannot be excluded. The observation of Hellings-Downs correlations points to the gravitational-wave origin of this signal.
0
Citation559
0
Save
0

The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars

Zaven Arzoumanian et al.Apr 1, 2018
We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background.
0

FAST RADIO BURST DISCOVERED IN THE ARECIBO PULSAR ALFA SURVEY

L. Spitler et al.Jul 10, 2014
Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4 GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with the Arecibo Observatory with a DM = 557.4 ± 2.0 pc cm−3, pulse width of 3.0 ± 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b = −02), the burst has three times the maximum Galactic DM expected along this particular line of sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102's brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.
0
Citation450
0
Save
0

An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102

D. Michilli et al.Jan 1, 2018
Fast radio bursts (FRBs) are millisecond-duration, extragalactic radio flashes of unknown physical origin. FRB 121102, the only known repeating FRB source, has been localized to a star-forming region in a dwarf galaxy at redshift z = 0.193, and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source, and the properties of the local environment are still debated. Here we present bursts that show ~100% linearly polarized emission at a very high and variable Faraday rotation measure in the source frame: RM_src = +1.46 x 10^5 rad m^-2 and +1.33 x 10^5 rad m^-2 at epochs separated by 7 months, in addition to narrow (< 30 mus) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, while the short burst durations argue for a neutron star origin. Such large rotation measures have, until now, only been observed in the vicinities of massive black holes (M_BH > 10^4 MSun). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may thus come from a neutron star in such an environment. However, the observed properties may also be explainable in other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.
0

The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background

Zaven Arzoumanian et al.May 20, 2018
We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released $11$-year dataset from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no significant evidence for a GWB, we place constraints on a GWB from a population of supermassive black-hole binaries, cosmic strings, and a primordial GWB. For the first time, we find that the GWB upper limits and detection statistics are sensitive to the Solar System ephemeris (SSE) model used, and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first PTA constraints that are robust against SSE uncertainties. We thus place a $95\%$ upper limit on the GW strain amplitude of $A_\mathrm{GWB}<1.45\times 10^{-15}$ at a frequency of $f=1$ yr$^{-1}$ for a fiducial $f^{-2/3}$ power-law spectrum, and with inter-pulsar correlations modeled. This is a factor of $\sim 2$ improvement over the NANOGrav $9$-year limit, calculated using the same procedure. Previous PTA upper limits on the GWB will need revision in light of SSE systematic uncertainties. We use our constraints to characterize the combined influence on the GWB of the stellar mass-density in galactic cores, the eccentricity of SMBH binaries, and SMBH--galactic-bulge scaling relationships. We constrain cosmic-string tension using recent simulations, yielding an SSE-marginalized $95\%$ upper limit on the cosmic string tension of $G\mu < 5.3\times 10^{-11}$---a factor of $\sim 2$ better than the published NANOGrav $9$-year constraints. Our SSE-marginalized $95\%$ upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation Universe) is $\Omega_\mathrm{GWB}(f)h^2<3.4\times10^{-10}$.
0
Citation408
0
Save
Load More