DA
Dario Alfé
Author with expertise in Advancements in Density Functional Theory
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(60% Open Access)
Cited by:
2,688
h-index:
64
/
i10-index:
185
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

PHON: A program to calculate phonons using the small displacement method

Dario AlféMar 19, 2009
The program phon calculates force constant matrices and phonon frequencies in crystals. From the frequencies it also calculates various thermodynamic quantities, like the Helmholtz free energy, the entropy, the specific heat and the internal energy of the harmonic crystal. The procedure is based on the small displacement method, and can be used in combination with any program capable to calculate forces on the atoms of the crystal. In order to examine the usability of the method, I present here two examples: metallic Al and insulating MgO. The phonons of these two materials are calculated using density functional theory. The small displacement method results are compared with those obtained using the linear response method. In the case of Al the method provides accurate phonon frequencies everywhere in the Brillouin Zone (BZ). In the case of MgO the longitudinal branch of the optical phonons near the centre of the BZ is incorrectly described as degenerate with the two transverse branches, because the non-analytical part of the dynamical matrix is ignored here; however, thermodynamic properties like the Helmholtz free are essentially unaffected. Program title: PHON Catalogue identifier: AEDP_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 580 No. of bytes in distributed program, including test data, etc.: 612 193 Distribution format: tar.gz Programming language: Fortran 90 Computer: Any Unix, Linux Operating system: Unix RAM: Depends on super-cell size, but usually negligible Classification: 7.8 External routines: Subprograms ZHEEV and DSYEV (Lapack); needs BLAS. A tutorial is provided with the distribution which requires the installation of the quantum-espresso package (http://www.quantum-espresso.org) Nature of problem: Stable crystals at low temperature can be well described by expanding the potential energy around the atomic equilibrium positions. The movements of the atoms around their equilibrium positions can then be described using harmonic theory, and is characterised by global vibrations called phonons, which can be identified by vectors in the Brillouin zone of the crystal, and there are 3 phonon branches for each atom in the primitive cell. The problem is to calculate the frequencies of these phonons for any arbitrary choice of q-vector in the Brillouin zone. Solution method: The small displacement method: each atom in the primitive cell is displaced by a small amount, and the forces induced on all the other atoms in the crystal are calculated and used to construct the force constant matrix. Supercells of ∼100 atoms are usually large enough to describe the force constant matrix up to the range where its elements have fallen to negligibly small values. The force constant matrix is then used to compute the dynamical matrix at any chosen q-vector in the Brillouin zone, and the diagonalisation of the dynamical matrix provides the squares of the phonon frequencies. The PHON code needs external programs to calculate these forces, and it can be used with any program capable of calculating forces in crystals. The most useful applications are obtained with codes based on density functional theory, but there is no restriction on what can be used. Running time: Negligible, typically a few seconds (or at most a few minutes) on a PC. It can take longer if very dense meshes of q-points are needed, for example, to compute very accurate phonon density of states.
0
Citation743
0
Save
0

Thermal and electrical conductivity of iron at Earth’s core conditions

Monica Pozzo et al.Apr 10, 2012
First principles calculations of the thermal and electrical conductivities of liquid iron mixtures under Earth's core conditions suggest a relatively high adiabatic heat flux of 15 to16 terawatts at the core–mantle boundary, indicating that the top of the core must be thermally stratified. The thermal and electrical properties of iron are important for understanding the thermal evolution of the deep Earth and the power available to drive the dynamo that generates Earth's magnetic field. These parameters have previously been estimated by extrapolating results from conditions with lower pressure or temperature, but Monica Pozzo and colleagues now present a calculation from first principles of these parameters at the pressure and temperature of Earth's outer core. Both conductivities are found to be two to three times higher than earlier estimates, prompting a re-evaluation of power estimates for the dynamo. The results greatly restrict models for powering the geodynamo, and indicate that the top of the core must be thermally stratified. The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core–mantle boundary (CMB), places constraints on Earth's evolution1. Estimates of CMB heat flux2,3,4,5 depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles—unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work6 and fit the seismologically determined core density and inner-core boundary density jump7,8. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection1; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core.
0
Paper
Citation565
0
Save
0

Perspective: How good is DFT for water?

M. Gillan et al.Apr 1, 2016
Kohn-Sham density functional theory (DFT) has become established as an indispensable tool for investigating aqueous systems of all kinds, including those important in chemistry, surface science, biology and the earth sciences. Nevertheless, many widely used approximations for the exchange-correlation (XC) functional describe the properties of pure water systems with an accuracy that is not fully satisfactory. The explicit inclusion of dispersion interactions generally improves the description, but there remain large disagreements between the predictions of different dispersion-inclusive methods. We present here a review of DFT work on water clusters, ice structures and liquid water, with the aim of elucidating how the strengths and weaknesses of different XC approximations manifest themselves across this variety of water systems. Our review highlights the crucial role of dispersion in describing the delicate balance between compact and extended structures of many different water systems, including the liquid. By referring to a wide range of published work, we argue that the correct description of exchange-overlap interactions is also extremely important, so that the choice of semi-local or hybrid functional employed in dispersion-inclusive methods is crucial. The origins and consequences of beyond-2-body errors of approximate XC functionals are noted, and we also discuss the substantial differences between different representations of dispersion. We propose a simple numerical scoring system that rates the performance of different XC functionals in describing water systems, and we suggest possible future developments.
0
Citation314
0
Save
0

Beyond Single-Reference Fixed-Node Approximation in Ab Initio Diffusion Monte Carlo Using Antisymmetrized Geminal Power Applied to Systems with Hundreds of Electrons

Kousuke Nakano et al.May 24, 2024
Diffusion Monte Carlo (DMC) is an exact technique to project out the ground state (GS) of a Hamiltonian. Since the GS is always bosonic, in Fermionic systems, the projection needs to be carried out while imposing antisymmetric constraints, which is a nondeterministic polynomial hard problem. In practice, therefore, the application of DMC on electronic structure problems is made by employing the fixed-node (FN) approximation, consisting of performing DMC with the constraint of having a fixed, predefined nodal surface. How do we get the nodal surface? The typical approach, applied in systems having up to hundreds or even thousands of electrons, is to obtain the nodal surface from a preliminary mean-field approach (typically, a density functional theory calculation) used to obtain a single Slater determinant. This is known as single reference. In this paper, we propose a new approach, applicable to systems as large as the C60 fullerene, which improves the nodes by going beyond the single reference. In practice, we employ an implicitly multireference ansatz (antisymmetrized geminal power wave function constraint with molecular orbitals), initialized on the preliminary mean-field approach, which is relaxed by optimizing a few parameters of the wave function determining the nodal surface by minimizing the FN-DMC energy. We highlight the improvements of the proposed approach over the standard single-reference method on several examples and, where feasible, the computational gain over the standard multireference ansatz, which makes the methods applicable to large systems. We also show that physical properties relying on relative energies, such as binding energies, are affordable and reliable within the proposed scheme.