ZS
Zhijun Shi
Author with expertise in Wound Healing and Regeneration
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(25% Open Access)
Cited by:
1,128
h-index:
34
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti3C2Tx) Composite Hydrogel as Wound Dressing for Accelerating Skin Wound Healing under Electrical Stimulation

Lin Mao et al.Aug 31, 2020
Traditional wound dressings mainly participate in the passive healing processes and are rarely engaged in active wound healing by stimulating skin cell behaviors. Electrical stimulation (ES) has been known to regulate skin cell behaviors. Herein, a series of multifunctional hydrogels based on regenerated bacterial cellulose (rBC) and MXene (Ti3 C2 Tx ) are first developed that can electrically modulate cell behaviors for active skin wound healing under external ES. The composite hydrogel with 2 wt% MXene (rBC/MXene-2%) exhibits the highest electrical conductivity and the best biocompatibility. Meanwhile, the rBC/MXene-2% hydrogel presents desired mechanical properties, favorable flexibility, good biodegradability, and high water-uptake capacity. An in vivo study using a rat full-thickness defect model reveals that this rBC/MXene hydrogel exhibits a better therapeutic effect than the commercial Tegaderm film. More importantly, in vitro and in vivo data demonstrate that coupling with ES, the hydrogel can significantly enhance the proliferation activity of NIH3T3 cells and accelerate the wound healing process, as compared to non-ES controls. This study suggests that the biodegradable and electroactive rBC/MXene hydrogel is an appealing candidate as a wound dressing for skin wound healing, while also providing an effective synergistic therapeutic strategy for accelerating wound repair process through coupling ES with the hydrogel dressing.
1

In Situ Synthesized Selenium Nanoparticles‐Decorated Bacterial Cellulose/Gelatin Hydrogel with Enhanced Antibacterial, Antioxidant, and Anti‐Inflammatory Capabilities for Facilitating Skin Wound Healing

Lin Mao et al.May 29, 2021
Bacterial-associated wound infection and antibiotic resistance have posed a major burden on patients and health care systems. Thus, developing a novel multifunctional antibiotic-free wound dressing that cannot only effectively prevent wound infection, but also facilitate wound healing is urgently desired. Herein, a series of multifunctional nanocomposite hydrogels with remarkable antibacterial, antioxidant, and anti-inflammatory capabilities, based on bacterial cellulose (BC), gelatin (Gel), and selenium nanoparticles (SeNPs), are constructed for wound healing application. The BC/Gel/SeNPs nanocomposite hydrogels exhibit excellent mechanical properties, good swelling ability, flexibility and biodegradability, and favorable biocompatibility, as well as slow and sustainable release profiles of SeNPs. The decoration of SeNPs endows the hydrogels with superior antioxidant and anti-inflammatory capability, and outstanding antibacterial activity against both common bacteria (E. coli and S. aureus) and their multidrug-resistant counterparts. Furthermore, the BC/Gel/SeNPs hydrogels show an excellent skin wound healing performance in a rat full-thickness defect model, as evidenced by the significantly reduced inflammation, and the notably enhanced wound closure, granulation tissue formation, collagen deposition, angiogenesis, and fibroblast activation and differentiation. This study suggests that the developed multifunctional BC/Gel/SeNPs nanocomposite hydrogel holds a great promise as a wound dressing for preventing wound infection and accelerating skin regeneration in clinic.
1
Citation211
0
Save
0

Antibacterial silk sericin/poly (vinyl alcohol) hydrogel with antifungal property for potential infected large burn wound healing: Systemic evaluation

Bianza Bakadia et al.Jul 20, 2022
Hydrogel-based burn wound dressings with excellent antibacterial, antifungal, and mechanical properties are ideal biomaterials to promote infected large burn wound healing. In this study, the hydrogel synthesized by repetitive freezing-thawing consists of poly (vinyl alcohol) (PVA), silk sericin (SS), and azithromycin (AZM), with genipin (GNP) as crosslinker. The FTIR showed that all hydrogel components were successfully blended. The swelling ratio, porosity, cell attachment, and proliferation improved with SS incorporation, while increased PVA content enhanced the mechanical performance of the hydrogel. The inclusion of AZM improved the antimicrobial property of the hydrogel towards Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. The hydrogel showed sustained SS and AZM releases as well as cytocompatibility on keratinocytes and fibroblasts. Furthermore, the hydrogel displays skin adhesion ability when freeze-dried. In the in vivo study using an infected mouse full-thickness burn model with a 10% total body surface area, it was shown that burn injury led to increased inflammatory cytokine responses and macroscopic and microscopic alterations in the spleen and liver. The kidneys, on the other hand, revealed neither change. Interestingly, the prepared hydrogel had a better burn wound healing effect than the commercial Tegaderm™ film dressing, minimizing systemic burn effects. Hence, this novel hydrogel is projected to be a promising candidate for accelerated healing of infected burn wounds.
0
Citation31
0
Save
0

In Situ Synthesized Porous Bacterial Cellulose/Poly(vinyl alcohol)‐Based Silk Sericin and Azithromycin Release System for Treating Chronic Wound Biofilm

Bianza Bakadia et al.Aug 13, 2022
Abstract Chronic wounds are associated with infectious microbial complex communities called biofilms. The management of chronic wound infection is limited by the complexity of selecting an appropriate antimicrobial dressing with antibiofilm activity due to antimicrobial resistance in biofilms. Herein, the in situ developed bacterial cellulose/poly(vinyl alcohol) (BC–PVA) composite is ex situ modified with genipin‐crosslinked silk sericin (SS) and azithromycin (AZM) (SSga). The composite is evaluated as a wound dressing material for preventing the development, dispersion, and/or eradication of microbial biofilm. Fourier transform infrared spectroscopy confirms the intermolecular interactions between the components of BC–PVA@SSga scaffolds. The addition of PVA during BC production significantly increases the porosity from 53.5% ± 2.3% to 83.5% ± 2.9%, the pore size from 2.3 ± 1.9 to 16.8 ± 4.5 µm, the fiber diameter from 35.5 ± 10 to 120 ± 27.4 nm, and improves the thermal stability and flexibility. Studies using bacteria and fungi indicate high inhibition and disruption of biofilms upon AZM addition. In vitro biocompatibility analysis confirms the nontoxic nature of BC–PVA@SSga toward HaCaT and NIH3T3 cells, whereas the addition of SS enhances cell proliferation. The developed BC–PVA@SSga accelerates wound healing in the infected mouse model, thus can be a promising wound dressing biomaterial.
0
Citation27
0
Save
0

Current trends and biomedical applications of resorbable polymers

Muhammad Ullah et al.Jan 1, 2019
Resorbable polymers refer to the polymeric materials that undergo degradation and dissolution of their building blocks and subsequent desorption in the natural environment of the human body. Such polymers have received immense consideration in biomedical applications, both alone and in the form of composites, owing to their structural, physicomechanical, and biological features and potential to synthesize composites with a range of materials for broad-spectrum biomedical applications. This chapter provides an overview of structural and biological features; and antigenic, inflammatory, and cytotoxic responses of three natural common resorbable polymers, including bacterial cellulose, collagen, and silk. An up-to-date review of approaches to modify the properties and to obtain suitable materials based on these resorbable polymers for specific applications of high clinical value for wound healing, skin tissue repair, artificial organs, regenerative medicine, delivery systems, biomedical imaging, fabrication of tissue scaffolds and grafts, and soft tissue engineering is provided. In addition, an overview of the latest developments in the design of medical devices based on these resorbable polymers is given. Finally, following a summary of the attractive abilities of these polymers, recommendations for various other future directions in biomedical field are provided.
Load More