GC
Guojun Chen
Author with expertise in Geochemistry of Manganese Oxides in Sedimentary Environments
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
9
(33% Open Access)
Cited by:
4
h-index:
20
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Mitochondria-Targeting Fluorescent Probe for the Dual Sensing of Hypochlorite and Viscosity without Signal Crosstalk in Living Cells and Zebrafish

Chao Gao et al.Jun 27, 2024
Hypochlorite (ClO−) and viscosity both affect the physiological state of mitochondria, and their abnormal levels are closely related to many common diseases. Therefore, it is vitally important to develop mitochondria-targeting fluorescent probes for the dual sensing of ClO− and viscosity. Herein, we have explored a new fluorescent probe, XTAP–Bn, which responds sensitively to ClO− and viscosity with off–on fluorescence changes at 558 and 765 nm, respectively. Because the emission wavelength gap is more than 200 nm, XTAP–Bn can effectively eliminate the signal crosstalk during the simultaneous detection of ClO− and viscosity. In addition, XTAP–Bn has several advantages, including high selectivity, rapid response, good water solubility, low cytotoxicity, and excellent mitochondrial-targeting ability. More importantly, probe XTAP–Bn is successfully employed to monitor the dynamic change in ClO− and viscosity levels in the mitochondria of living cells and zebrafish. This study not only provides a reliable tool for identifying mitochondrial dysfunction but also offers a potential approach for the early diagnosis of mitochondrial-related diseases.
0
Citation1
0
Save
0

Sequestration of Labile Organic Matter by Secondary Fe Minerals from Chemodenitrification: Insight into Mineral Protection Mechanisms

Shiwen Hu et al.May 29, 2024
Labile organic matter (OM) immobilized by secondary iron (Fe) minerals from chemodenitrification may be an effective way to immobilize organic carbon (OC). However, the underlying mechanisms of coupled chemodenitrification and OC sequestration are poorly understood. Here, OM immobilization by secondary Fe minerals from chemodenitrification was investigated at different C/Fe ratios. Kinetics of Fe(II) oxidation and nitrite reduction rates decreased with increasing C/Fe ratios. Despite efficient sequestration, the immobilization efficiency of OM by secondary minerals varied with the C/Fe ratios. Higher C/Fe ratios were conducive to the formation of ferrihydrite and lepidocrocite, with defects and nanopores. Three contributions, including inner-core Fe–O and edge- and corner-shared Fe–Fe interactions, constituted the local coordination environment of mineral–organic composites. Microscopic analysis at the molecular scale uncovered that labile OM was more likely to combine with secondary minerals with poor crystallinity to enhance its stability, and OM distributed within nanopores and defects had a higher oxidation state. After chemodenitrification, high molecular weight substances and substances high in unsaturation or O/C ratios including phenols, polycyclic aromatics, and carboxylic compounds exhibited a stronger affinity to Fe minerals in the treatments with lower C/Fe ratios. Collectively, labile OM immobilization can occur during chemodenitrification. The findings on OM sequestration coupled with chemodenitrification have significant implications for understanding the long-term cycling of Fe, C, and N, providing a potential strategy for OM immobilization in anoxic soils and sediments.
0

Hematite enhances microbial autotrophic nitrate removal in carbonate and phosphate-rich environments by increasing Fe(II) activity

M. Long et al.Jul 1, 2024
Groundwater contamination by nitrates presents significant risks to both human health and the environment. In groundwater characterized as oligotrophic-low in organic carbon, but abundant in carbonate and phosphate-chemolithoautotrophic bacteria, including nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB), play a vital role in denitrification. The chemoautotrophic nitrate reduction is sensitive to environmental factors, including widespread iron oxides like hematite in nature. However, the specific mechanisms of this influence remain unclear. We examined the mechanism of how hematite impacts autotrophic nitrate reduction in a model NRFeOB community known as culture KS. We found that hematite enhances the rate of autotrophic nitrate reduction by promoting Fe(II) oxidation. Mössbauer spectroscopy detected a significant amount of adsorbed Fe(II) when hematite was present, leading to a reduction in dissolved ferrous iron. In conjunction with XRD data, it can be inferred that the formation of vivianite decreased, thereby increasing the Fe(II) activity in the reaction system. Within the culture KS bacterial consortium, hematite fosters the proliferation of autotrophic microorganisms, specifically Gallionellaceae, and amplifies the presence of denitrifying microbes, notably Rhodanobacter. This dual enhancement improves Fe(II) utilization and nitrate reduction capabilities. Our findings highlight intricate interactions between hematite and a model NRFeOB community, offering insights into groundwater nitrate removal mechanisms and the ecological strategies of autotrophic bacteria in mineral-rich environments.
0

Speciation of perfluoroalkyl acid forms in soils and its environmental implications

C. Guo et al.Jun 1, 2024
Perfluoroalkyl acids (PFAAs) are emerging organic pollutants that have attracted significant attention in the fields of environmental chemistry and toxicology. Although PFAAs are pervasive in soils and sediments, there is a paucity of research regarding their environmental forms and driving mechanisms. This review provides an overview of the classification and biotoxicity of per- and polyfluoroalkyl substances (PFAS), organic pollutant forms, PFAS extraction and analytical methods, the prediction of PFAS distribution in soils, and current PFAS remediation strategies. Four predominant PFAA forms have been proposed in soils: (i) aqueous-extracted PFAAs, (ii) organic-solvent extracted PFAAs, (iii) embedded or sequestered PFAAs, and (iv) covalently bound PFAAs. Furthermore, it suggests suitable extraction methods and predictive models for different PFAA forms, which are instrumental in the research on PFAA speciation and prediction in soils. Simultaneously, it was proposed that elemental cycling and microbial activity may affect the speciation of PFAS. Additionally, the categorization of PFAA forms facilitated the analysis of pollution remediation. Understanding the interplay between PFAA speciation, element cycling, and bacterial activity during soil remediation is essential for understanding remediation mechanisms and assessing the long-term stability of remediation methods. Future studies should expand the investigation of varying PFAA forms in different media, consider the potential binding forms of PFAAs to minerals, organic matter, and microbes, and evaluate the possible mechanisms of PFAA speciation variation.