NC
Nicole Coffey
Author with expertise in Plant-Parasitic Nematodes in Molecular Plant Pathology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
0
h-index:
1
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Local and systemic transcriptome and spliceome reprogramming induced by the root-knot nematode Meloidogyne incognita in tomato

Selin Ozdemir et al.Jul 24, 2024
Abstract Root-knot nematodes (Meloidogyne spp.) are widely spread root parasites that infect thousands of vascular plant species. These highly polyphagous nematodes engage in sophisticated interactions with host plants that results in the formation of knot-like structures known as galls whose ontogeny remains largely unknown. Here, we determined transcriptome changes and alternative splicing variants induced by Megalaima incognita in galls and neighboring root cells at two distinct infective stages. M. incognita induced substantial transcriptome changes in tomato roots both locally in galls and systemically in neighboring cells. A considerable parallel regulation of gene expression in galls and neighboring cells were detected, indicative of effective intercellular communications exemplified by suppression of basal defense responses particularly during the early stage of infection. The transcriptome analysis also revealed that M. incognita exerts a tight control over the cell cycle process as a whole that results in an increase of ploidy levels in the feeding sites and accelerated mitotic activity of the gall cells. Alternative splicing analysis indicated that M. incognita significantly modulates pre-mRNA splicing as a total of 9064 differentially spliced events from 2898 genes were identified where intron retention and exon skipping events were largely suppressed. Furthermore, a number of differentially spliced events were functionally validated using transgenic hairy root system and found to impact gall formation and nematode egg mass production. Together, our data provide unprecedented insights into the transcriptome and spliceome reprogramming induced by M. incognita in tomato with respect to gall ontogeny and nematode parasitism.
0

Regulation and functions of long non-coding RNAs during Meloidogyne incognita parasitism of tomato

Selin Ozdemir et al.Nov 19, 2024
Long non-coding RNAs (lncRNAs) are emerging as important regulators of various aspects of immune response and plant-pathogen interactions. However, the regulatory function of lncRNAs during plant-nematode interaction remain largely elusive. In this study, we investigated the differential regulation and function of lncRNAs during two different stages of tomato infection by the root-knot nematode Meloidogyne incognita. At the early stage of infection, 2218 and 2827 lncRNAs were regulated locally in the M. incognita–induced galls and systemically in the neighboring root cells, respectively. However, at the later stage of infection, the number of M. incognita–regulated lncRNAs was dramatically reduced with only 49 lncRNA being identified as differentially expressed. Differentially expressed lncRNAs were predicted to encode peptides with functionally annotated domains, providing insights into the potential roles of these peptides in regulating gene expression, RNA stability and splicing, and protein-protein-interactions. Among the differentially expressed lcRNAs, 55 were found to contain putative binding sites for 56 miRNAs. Overexpressing 5 of these lncRNAs significantly increased tomato resistance to M. incognita, supporting the functional importance of lncRNAs for establishing tomato–M. incognita interaction. Functional analysis of the target mimicry of lncRNAs towards miRNAs resulted in the identification of two novel regulatory modules involving miR47 and miR156e-5p and their targeted genes that regulate tomato responses to M. incognita parasitism. Taken together, our data provide novel insights into the transcriptional and post-transcriptional regulatory functions of lncRNA, and open a new avenue to engineer crop plants with enhanced nematode resistance by leveraging the regulatory potential of lncRNAs.