NS
Nicholas Sather
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
760
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Enhanced Out-of-Plane Conductivity and Photovoltaic Performance in n = 1 Layered Perovskites through Organic Cation Design

James Passarelli et al.Jun 5, 2018
Layered perovskites with the formula (R–NH3)2PbI4 have excellent environmental stability but poor photovoltaic function due to the preferential orientation of the semiconducting layer parallel to the substrate and the typically insulating nature of the R–NH3+ cation. Here, we report a series of these n = 1 layered perovskites with the form (aromatic-O-linker-NH3)2PbI4 where the aromatic moiety is naphthalene, pyrene, or perylene and the linker is ethyl, propyl, or butyl. These materials achieve enhanced conductivity perpendicular to the inorganic layers due to better energy level matching between the inorganic layers and organic galleries. The enhanced conductivity and visible absorption of these materials led to a champion power conversion efficiency of 1.38%, which is the highest value reported for any n = 1 layered perovskite, and it is an order of magnitude higher efficiency than any other n = 1 layered perovskite oriented with layers parallel to the substrate. These findings demonstrate the importance of leveraging the electronic character of the organic cation to improve optoelectronic properties and thus the photovoltaic performance of these chemically stable low n layered perovskites.
0
Paper
Citation300
0
Save
0

3D-Ink-Extruded Titanium Scaffolds with Porous Struts and Bioactive Supramolecular Polymers for Orthopedic Implants

John Misiaszek et al.Sep 1, 2024
Porous Ti addresses the longstanding orthopedic challenges of aseptic loosening and stress shielding. This work expands on the evolution of porous Ti with the manufacturing of hierarchically porous, low stiffness, ductile Ti scaffolds via direct-ink write (DIW) extrusion and sintering of inks containing Ti and NaCl particles. Scaffold macrochannels were filled with a subtherapeutic dose of recombinant bone morphogenetic protein-2 (rhBMP-2) alone or co-delivered within a bioactive supramolecular polymer slurry (SPS) composed of peptide amphiphile nanofibrils and collagen, creating four treatment conditions (Ti struts: microporous vs. fully dense; BMP-2 alone or with SPS). The BMP-2-loaded scaffolds were implanted bilaterally across the L4 and L5 transverse processes in a rat posterolateral lumbar fusion model. In-vivo bone growth in these scaffolds is evaluated with synchrotron X-ray computed microtomography (μCT) to study the effects of strut microporosity and added biological signaling agents on the bone formation response. Optical and scanning electron microscopy confirms the ∼100μm space-holder micropore size, high-curvature morphology, and pore fenestrations within the struts. Uniaxial compression testing shows that the microporous strut scaffolds have low stiffness and high ductility. A significant promotion in bone formation was observed for groups utilizing the SPS, while no significant differences were found for the scaffolds with the incorporation of micropores. STATEMENT OF SIGNIFICANCE: By 2050, the anticipated number of people aged 60 years and older worldwide is anticipated to double to 2.1 billion. This rapid increase in the geriatric population will require a corresponding increase in orthopedic surgeries and more effective materials for longer indwelling times. Titanium alloys have been the gold standard of bone fusion and fixation, but their use has longstanding limitations in bone-implant stiffness mismatch and insufficient osseointegration. We utilize 3D-printing of titanium with NaCl space holders for large- and small-scale porosity and incorporate bioactive supramolecular polymers into the scaffolds to increase bone growth. This work finds no significant change in bone ingrowth via microporosity but significant increases in bone ingrowth via the bioactive supramolecular polymers in a rat posterolateral fusion model.