HL
Hao Li
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
20
(25% Open Access)
Cited by:
6,251
h-index:
53
/
i10-index:
109
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies

Hao Li et al.Feb 17, 2017
Selective organic transformation under mild conditions constitutes a challenge in green chemistry, especially for alcohol oxidation, which typically requires environmentally unfriendly oxidants. Here, we report a new plasmonic catalyst of Au supported on BiOCl containing oxygen vacancies. It photocatalyzes selective benzyl alcohol oxidation with O2 under visible light through synergistic action of plasmonic hot electrons and holes. Oxygen vacancies on BiOCl facilitate the trapping and transfer of plasmonic hot electrons to adsorbed O2, producing •O2– radicals, while plasmonic hot holes remaining on the Au surface mildly oxidize benzyl alcohol to corresponding carbon-centered radicals. The hypothesized concerted ring addition between these two radical species on the BiOCl surface highly favors the production of benzaldehyde along with an unexpected oxygen atom transfer from O2 to the product. The results and understanding acquired in this study, based on the full utilization of hot charge carriers in a plasmonic metal deposited on a rationally designed support, will contribute to the development of more active and/or selective plasmonic catalysts for a wide variety of organic transformations.
0

Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides

Jie Li et al.Dec 23, 2016
ConspectusHydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber–Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1–xZnx)(N1–xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2.This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.
0

Oxygen Vacancy Associated Surface Fenton Chemistry: Surface Structure Dependent Hydroxyl Radicals Generation and Substrate Dependent Reactivity

Hao Li et al.Apr 18, 2017
Understanding the chemistry of hydrogen peroxide (H2O2) decomposition and hydroxyl radical (•OH) transformation on the surface molecular level is a great challenge for the application of heterogeneous Fenton system in the fields of chemistry, environmental, and life science. We report in this study a conceptual oxygen vacancy associated surface Fenton system without any metal ions leaching, exhibiting unprecedented surface chemistry based on the oxygen vacancy of electron-donor nature for heterolytic H2O2 dissociation. By controlling the delicate surface structure of catalyst, this novel Fenton system allows the facile tuning of •OH existing form for targeted catalytic reactions with controlled reactivity and selectivity. On the model catalyst of BiOCl, the generated •OH tend to diffuse away from the (001) surface for the selective oxidation of dissolved pollutants in solution, but prefer to stay on the (010) surface, reacting with strongly adsorbed pollutants with high priority. These findings will extend the scope of Fenton catalysts via surface engineering and consolidate the fundamental theories of Fenton reactions for wide environmental applications.
0

Oxygen Vacancy Structure Associated Photocatalytic Water Oxidation of BiOCl

Hao Li et al.Nov 4, 2016
A central issue in understanding photocatalytic water splitting on a stoichiometric or defective nanostructured oxide surface is its adsorption mode and related reactivity. More than just improving the adsorption of water on oxide surfaces, we demonstrate in this work that surface oxygen vacancies (OVs) also offer a possibility of activating water toward thermodynamically enhanced photocatalytic water oxidation, while the water activation state, as reflected by its capability to trap holes, strongly depends on the structures of OVs. Utilizing well-ordered BiOCl single-crystalline surfaces, we reveal that dissociatively adsorbed water on the OV of the (010) surface exhibits higher tendency to be oxidized than the molecularly adsorbed water on the OV of the (001) surface. Analysis of the geometric atom arrangement shows that the OV of the BiOCl (010) surface can facilitate barrierless O–H bond breaking in the first proton removal reaction, which is sterically hindered on the OV of the BiOCl (001) surface, and also allow more localized electrons transfer from the OV to the dissociatively adsorbed water, leading to its higher water activation level for hole trapping. These findings highlight the indispensable role of crystalline surface structure on water oxidation and may open up avenues for the rational design of highly efficient photocatalysts via surface engineering.
0

New Insight into Daylight Photocatalysis of AgBr@Ag: Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis

Jing Jiang et al.Apr 19, 2012
Abstract Noble metal nanoparticles (NPs) are often used as electron scavengers in conventional semiconductor photocatalysis to suppress electron–hole (e − –h + ) recombination and promote interfacial charge transfer, and thus enhance photocatalytic activity of semiconductors. In this contribution, it is demonstrated that noble metal NPs such as Ag NPs function as visible‐light harvesting and electron‐generating centers during the daylight photocatalysis of AgBr@Ag. Novel Ag plasmonic photocatalysis could cooperate with the conventional AgBr semiconductor photocatalysis to enhance the overall daylight activity of AgBr@Ag greatly because of an interesting synergistic effect. After a systematic investigation of the daylight photocatalysis mechanism of AgBr@Ag, the synergistic effect was attributed to surface plasmon resonance induced local electric field enhancement on Ag, which can accelerate the generation of e − –h + pairs in AgBr, so that more electrons are produced in the conduction band of AgBr under daylight irradiation. This study provides new insight into the photocatalytic mechanism of noble metal/semiconductor systems as well as the design and fabrication of novel plasmonic photocatalysts.
Load More