CC
Chun Chen
Author with expertise in Advances in Transfer Learning and Domain Adaptation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
2,771
h-index:
58
/
i10-index:
199
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Opinion Word Expansion and Target Extraction through Double Propagation

Guang Qiu et al.Jan 21, 2011
Analysis of opinions, known as opinion mining or sentiment analysis, has attracted a great deal of attention recently due to many practical applications and challenging research problems. In this article, we study two important problems, namely, opinion lexicon expansion and opinion target extraction. Opinion targets (targets, for short) are entities and their attributes on which opinions have been expressed. To perform the tasks, we found that there are several syntactic relations that link opinion words and targets. These relations can be identified using a dependency parser and then utilized to expand the initial opinion lexicon and to extract targets. This proposed method is based on bootstrapping. We call it double propagation as it propagates information between opinion words and targets. A key advantage of the proposed method is that it only needs an initial opinion lexicon to start the bootstrapping process. Thus, the method is semi-supervised due to the use of opinion word seeds. In evaluation, we compare the proposed method with several state-of-the-art methods using a standard product review test collection. The results show that our approach outperforms these existing methods significantly.
0

Graph Regularized Sparse Coding for Image Representation

Zheng Miao et al.Nov 10, 2010
Sparse coding has received an increasing amount of interest in recent years. It is an unsupervised learning algorithm, which finds a basis set capturing high-level semantics in the data and learns sparse coordinates in terms of the basis set. Originally applied to modeling the human visual cortex, sparse coding has been shown useful for many applications. However, most of the existing approaches to sparse coding fail to consider the geometrical structure of the data space. In many real applications, the data is more likely to reside on a low-dimensional submanifold embedded in the high-dimensional ambient space. It has been shown that the geometrical information of the data is important for discrimination. In this paper, we propose a graph based algorithm, called graph regularized sparse coding, to learn the sparse representations that explicitly take into account the local manifold structure of the data. By using graph Laplacian as a smooth operator, the obtained sparse representations vary smoothly along the geodesics of the data manifold. The extensive experimental results on image classification and clustering have demonstrated the effectiveness of our proposed algorithm.
0

Music recommendation by unified hypergraph

Jiajun Bu et al.Oct 25, 2010
Acoustic-based music recommender systems have received increasing interest in recent years. Due to the semantic gap between low level acoustic features and high level music concepts, many researchers have explored collaborative filtering techniques in music recommender systems. Traditional collaborative filtering music recommendation methods only focus on user rating information. However, there are various kinds of social media information, including different types of objects and relations among these objects, in music social communities such as Last.fm and Pandora. This information is valuable for music recommendation. However, there are two challenges to exploit this rich social media information: (a) There are many different types of objects and relations in music social communities, which makes it difficult to develop a unified framework taking into account all objects and relations. (b) In these communities, some relations are much more sophisticated than pairwise relation, and thus cannot be simply modeled by a graph. In this paper, we propose a novel music recommendation algorithm by using both multiple kinds of social media information and music acoustic-based content. Instead of graph, we use hypergraph to model the various objects and relations, and consider music recommendation as a ranking problem on this hypergraph. While an edge of an ordinary graph connects only two objects, a hyperedge represents a set of objects. In this way, hypergraph can be naturally used to model high-order relations. Experiments on a data set collected from the music social community Last.fm have demonstrated the effectiveness of our proposed algorithm.
0

Online Knowledge Distillation with Diverse Peers

Defang Chen et al.Apr 3, 2020
Distillation is an effective knowledge-transfer technique that uses predicted distributions of a powerful teacher model as soft targets to train a less-parameterized student model. A pre-trained high capacity teacher, however, is not always available. Recently proposed online variants use the aggregated intermediate predictions of multiple student models as targets to train each student model. Although group-derived targets give a good recipe for teacher-free distillation, group members are homogenized quickly with simple aggregation functions, leading to early saturated solutions. In this work, we propose Online Knowledge Distillation with Diverse peers (OKDDip), which performs two-level distillation during training with multiple auxiliary peers and one group leader. In the first-level distillation, each auxiliary peer holds an individual set of aggregation weights generated with an attention-based mechanism to derive its own targets from predictions of other auxiliary peers. Learning from distinct target distributions helps to boost peer diversity for effectiveness of group-based distillation. The second-level distillation is performed to transfer the knowledge in the ensemble of auxiliary peers further to the group leader, i.e., the model used for inference. Experimental results show that the proposed framework consistently gives better performance than state-of-the-art approaches without sacrificing training or inference complexity, demonstrating the effectiveness of the proposed two-level distillation framework.
0
Citation245
0
Save
0

Semi-supervised Coupled Dictionary Learning for Person Re-identification

Xiao Liu et al.Jun 1, 2014
The desirability of being able to search for specific persons in surveillance videos captured by different cameras has increasingly motivated interest in the problem of person re-identification, which is a critical yet under-addressed challenge in multi-camera tracking systems. The main difficulty of person re-identification arises from the variations in human appearances from different camera views. In this paper, to bridge the human appearance variations across cameras, two coupled dictionaries that relate to the gallery and probe cameras are jointly learned in the training phase from both labeled and unlabeled images. The labeled training images carry the relationship between features from different cameras, and the abundant unlabeled training images are introduced to exploit the geometry of the marginal distribution for obtaining robust sparse representation. In the testing phase, the feature of each target image from the probe camera is first encoded by the sparse representation and then recovered in the feature space spanned by the images from the gallery camera. The features of the same person from different cameras are similar following the above transformation. Experimental results on publicly available datasets demonstrate the superiority of our method.
0
Citation228
0
Save
0

ReTrust: Attack-Resistant and Lightweight Trust Management for Medical Sensor Networks

Daojing He et al.Apr 16, 2012
Wireless medical sensor networks (MSNs) enable ubiquitous health monitoring of users during their everyday lives, at health sites, without restricting their freedom. Establishing trust among distributed network entities has been recognized as a powerful tool to improve the security and performance of distributed networks such as mobile ad hoc networks and sensor networks. However, most existing trust systems are not well suited for MSNs due to the unique operational and security requirements of MSNs. Moreover, similar to most security schemes, trust management methods themselves can be vulnerable to attacks. Unfortunately, this issue is often ignored in existing trust systems. In this paper, we identify the security and performance challenges facing a sensor network for wireless medical monitoring and suggest it should follow a two-tier architecture. Based on such an architecture, we develop an attack-resistant and lightweight trust management scheme named ReTrust. This paper also reports the experimental results of the Collection Tree Protocol using our proposed system in a network of TelosB motes, which show that ReTrust not only can efficiently detect malicious/faulty behaviors, but can also significantly improve the network performance in practice.
0

Cross-Layer Distillation with Semantic Calibration

Defang Chen et al.May 18, 2021
Recently proposed knowledge distillation approaches based on feature-map transfer validate that intermediate layers of a teacher model can serve as effective targets for training a student model to obtain better generalization ability. Existing studies mainly focus on particular representation forms for knowledge transfer between manually specified pairs of teacher-student intermediate layers. However, semantics of intermediate layers may vary in different networks and manual association of layers might lead to negative regularization caused by semantic mismatch between certain teacher-student layer pairs. To address this problem, we propose Semantic Calibration for Cross-layer Knowledge Distillation (SemCKD), which automatically assigns proper target layers of the teacher model for each student layer with an attention mechanism. With a learned attention distribution, each student layer distills knowledge contained in multiple layers rather than a single fixed intermediate layer from the teacher model for appropriate cross-layer supervision in training. Consistent improvements over state-of-the-art approaches are observed in extensive experiments with various network architectures for teacher and student models, demonstrating the effectiveness and flexibility of the proposed attention based soft layer association mechanism for cross-layer distillation.
0
Citation201
0
Save
0

Fast calculation of a cylindrical hologram by a preloaded stochastic gradient descent with skip connection

Z. Wu et al.Aug 1, 2024
Cylindrical holography has received widespread attention due to its unique 360° viewing zone. To achieve commercial quality requirements, introducing stochastic gradient descent (SGD) is a potential approach for computer-generated cylindrical holography (CGCH). However, SGD applied to CGCH suffers from both slow convergence speed and unstable convergence, severely impacting its application. To address these issues, a preloaded SGD method with skip connection is proposed for fast calculation of cylindrical holograms in this paper. Preloaded-SGD (PSGD) exhibits a significant enhancement in convergence speed compared to the conventional SGD. Furthermore, the skip connection prevents oscillations from occurring by directly connecting the input and output, which is highly beneficial for obtaining high-quality holograms in the later stages of convergence. Numerical simulations demonstrate the effectiveness of our proposed method. PSGD with skip connection(SC-PSGD) achieves a 6.3-fold acceleration over conventional SGD. Notably, our proposed method has broad application prospects in cylindrical holographic displays and 3D displays.