XS
Xiaofang Sun
Author with expertise in Mechanisms and Implications of Ferroptosis in Cancer
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
5,665
h-index:
46
/
i10-index:
119
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Activation of the p62‐Keap1‐NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells

Xiaofang Sun et al.Sep 25, 2015
Ferroptosis is a recently recognized form of regulated cell death caused by an iron‐dependent accumulation of lipid reactive oxygen species. However, the molecular mechanisms regulating ferroptosis remain obscure. Here, we report that nuclear factor erythroid 2‐related factor 2 (NRF2) plays a central role in protecting hepatocellular carcinoma (HCC) cells against ferroptosis. Upon exposure to ferroptosis‐inducing compounds (e.g., erastin, sorafenib, and buthionine sulfoximine), p62 expression prevented NRF2 degradation and enhanced subsequent NRF2 nuclear accumulation through inactivation of Kelch‐like ECH‐associated protein 1. Additionally, nuclear NRF2 interacted with transcriptional coactivator small v‐maf avian musculoaponeurotic fibrosarcoma oncogene homolog proteins such as MafG and then activated transcription of quinone oxidoreductase‐1, heme oxygenase‐1, and ferritin heavy chain‐1. Knockdown of p62, quinone oxidoreductase‐1, heme oxygenase‐1, and ferritin heavy chain‐1 by RNA interference in HCC cells promoted ferroptosis in response to erastin and sorafenib. Furthermore, genetic or pharmacologic inhibition of NRF2 expression/activity in HCC cells increased the anticancer activity of erastin and sorafenib in vitro and in tumor xenograft models. Conclusion: These findings demonstrate novel molecular mechanisms and signaling pathways of ferroptosis; the status of NRF2 is a key factor that determines the therapeutic response to ferroptosis‐targeted therapies in HCC cells. (H epatology 2016;63:173–184)
0

Metallothionein‐1G facilitates sorafenib resistance through inhibition of ferroptosis

Xiaofang Sun et al.Mar 25, 2016
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide and currently has the fastest rising incidence of all cancers. Sorafenib was originally identified as an inhibitor of multiple oncogenic kinases and remains the only approved systemic therapy for advanced HCC. However, acquired resistance to sorafenib has been found in HCC patients, which results in poor prognosis. Here, we show that metallothionein (MT)-1G is a critical regulator and promising therapeutic target of sorafenib resistance in human HCC cells. The expression of MT-1G messenger RNA and protein is remarkably induced by sorafenib but not other clinically relevant kinase inhibitors (e.g., erlotinib, gefitinib, tivantinib, vemurafenib, selumetinib, imatinib, masitinib, and ponatinib). Activation of the transcription factor nuclear factor erythroid 2-related factor 2, but not p53 and hypoxia-inducible factor 1-alpha, is essential for induction of MT-1G expression following sorafenib treatment. Importantly, genetic and pharmacological inhibition of MT-1G enhances the anticancer activity of sorafenib in vitro and in tumor xenograft models. The molecular mechanisms underlying the action of MT-1G in sorafenib resistance involve the inhibition of ferroptosis, a novel form of regulated cell death. Knockdown of MT-1G by RNA interference increases glutathione depletion and lipid peroxidation, which contributes to sorafenib-induced ferroptosis.These findings demonstrate a novel molecular mechanism of sorafenib resistance and suggest that MT-1G is a new regulator of ferroptosis in HCC cells. (Hepatology 2016;64:488-500).
0

DDX21 functions as a potential novel oncopromoter in pancreatic ductal adenocarcinoma: a comprehensive analysis of the DExD box family

Shaohan Wu et al.Aug 3, 2024
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal tumor with an ill-defined pathogenesis. DExD box (DDX) family genes are widely distributed and involved in various RNA metabolism and cellular biogenesis; their dysregulation is associated with aberrant cellular processes and malignancies. However, the prognostic significance and expression patterns of the DDX family in PDAC are not fully understood. The present study aimed to explore the clinical value of DDX genes in PDAC. Differentially expressed DDX genes were identified. DDX genes related to prognostic signatures were further investigated using LASSO Cox regression analysis. DDX21 protein expression was analyzed using the UALCAN and human protein atlas (HPA) online tools and confirmed in 40 paired PDAC and normal tissues through Tissue Microarrays (TMA). The independent prognostic significance of DDX21 in PDAC was determined through the construction of nomogram models and calibration curves. The functional roles of DDX21 were investigated using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Cell proliferation, invasion, and migration were assessed using Cell Counting Kit-8, colony formation, Transwell, and wound healing assays. Upregulation of genes related to prognostic signatures (DDX10, DDX21, DDX60, and DDX60L) was significantly associated with poor prognosis of patients with PDAC based on survival and recurrence time. Considering the expression profile and prognostic values of the signature-related genes, DDX21 was finally selected for further exploration. DDX21 was overexpressed significantly at both the mRNA and protein levels in PDAC compared to normal pancreatic tissues. DDX21 expression, pathological stage, and residual tumor were significant independent prognostic indicators in PDAC. Moreover, functional enrichment analysis revealed that Genes co-expressed with DDX21 are predominantly involved in RNA metabolism, helicase activity, ribosome biogenesis, cell cycle, and various cancer-related pathways, such as PI3K/Akt signaling pathway and TGF-β signaling pathway. Furthermore, in vitro experiments confirmed that the knockdown of DDX21 significantly reduced MIA PaCa-2 cell viability, proliferation, migration, and invasion. Four signature-related genes could relatively precisely predict the prognosis of patients with PDAC. Specifically, DDX21 upregulation may signal an unfavorable prognosis by negatively affecting the biological properties of PDAC cells. DDX21 may be considered as a candidate therapeutic target in PDAC.
Load More