EM
Emmanuel Marin
Author with expertise in Silicon Photonics Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
473
h-index:
22
/
i10-index:
60
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Strain and Temperature Sensing Characteristics of Single-Mode–Multimode–Single-Mode Structures

Saurabh Tripathi et al.Apr 22, 2009
 We present a comprehensive study of the strain and temperature-sensing characteristics of single-mode–multimode–single-mode (SMS) structures based on the modal interference of guided modes of graded index multimode fiber (MMF) section spliced in between two single-mode fibers. A detailed theoretical study of the structures in terms of the refractive index distribution, effect of dopant and their concentrations, and the variation of core diameter has been carried out. Our study shows that for the SMS structure with a ${\rm GeO}_{2}$-doped MMF there exists a critical wavelength on either side of which the spectrum shows opposite spectral shift with a change in temperature/strain, whereas for structures with a ${\rm P}_{2}{\rm O}_{5}$-doped MMF it shows monotonic red shift with increasing temperature/strain. It has been found that the critical wavelength shifts toward higher wavelengths with decreasing " $q$" value/doping concentration. Using different MMFs, both the red and blue spectral shifts have been observed experimentally. It has also been found that the SMS structure has higher sensitivity toward this critical wavelength. The study should find application in designing strain-insensitive high-sensitive temperature sensors or vice versa. 
0

Recent advances in radiation-hardened fiber-based technologies for space applications

Sylvain Girard et al.Jul 10, 2018
In this topical review, the recent progress on radiation-hardened fiber-based technologies is detailed, focusing on examples for space applications. In the first part of the review, we introduce the operational principles of the various fiber-based technologies considered for use in radiation environments: passive optical fibers for data links, diagnostics, active optical fibers for amplifiers and laser sources as well as the different classes of point and distributed fiber sensors: gyroscopes, Bragg gratings, Rayleigh, Raman or Brillouin-based distributed sensors. Second, we describe the state of the art regarding our knowledge of radiation effects on the performance of these devices, from the microscopic effects observed in the amorphous silica glass used to design fiber cores and cladding, to the macroscopic response of fiber-based devices and systems. Third, we present the recent advances regarding the hardening (improvement of the radiation tolerance) of these technologies acting on the material, device or system levels. From the review, the potential of fiber-based technologies for operation in radiation environments is demonstrated and the future challenges to be overcome in the coming years are presented.
0

Distributed Optical Fiber-Based Radiation Detection Using an Ultra-Low-Loss Optical Fiber

Luca Weninger et al.May 30, 2024
The combination of an ultra-low-loss optical fiber sensitive to ionizing radiation and an optical time domain reflectometer (OTDR) is investigated to explore the feasibility of a single-ended distributed radiation detector. The peculiarity of the tested fiber resides in its regenerative high radiation-induced attenuation (RIA) response in the infrared spectrum (1310 nm), which returns to a low value once the irradiation has ended, combined to its sensitivity, highly increasing with the dose rate. In this work, only some sections of the fiber line were irradiated with 100 kV X-rays at room temperature, to prove the spatially resolved radiation detection capabilities of the system. The transient RIA response of the fiber was characterized at different pre-irradiation doses. A pre-irradiation treatment was shown to stabilize the optical fiber response, improving its RIA vs. dose rate linearity and repeatability. This improved response, in terms of radiation quantification, comes at the cost of a lower detection threshold. This work lays the bases for a distributed radiation detector, with some capabilities in dose rate evaluation.
0

Unveiling MOF-808 Photocycle and its Interaction with Luminescent Guests

Giuseppina Ficarra et al.Jan 1, 2024
The world of metal-organic frameworks (MOFs) has become a hot topic in recent years due to the extreme variety and tunability of their structures. There is evidence of MOFs that exhibit intrinsic luminescence properties that arise directly from their organic components or from the interaction between them and metallic counterparts. A new perspective is to exploit the porous nature of MOFs by encapsulating luminescent guests, such as organic dyes, in order to explore possible changes in the luminescence activity of the combined systems. This work is focused on the optical study of zirconium-based MOF-808 and its interaction with encapsulated rhodamine B molecules. Using a plethora of different techniques, we were able to unravel its photocycle. MOF-808 displays intrinsic luminescence activity that derives from an energy transfer process from the linker to the metal sites occurring in 300 ps. The emission is a singlet-singlet transition in aqueous solution, and it is a triplet transition in powdered form. After exploring the bare MOF, we combined it with rhodamine B molecules, following an easy post-synthetic process. Rhodamine B molecules were found to be encapsulated in MOF pores and interact with the MOF's matrix through nanosecond energy transfer. We created a totally new dual-emitting system and suggested a way, based on the time-resolved studies, to clearly unravel the photocycle of MOFs from the very first photoexcitation.