EL
Eric Lam
Author with expertise in Importance of Mangrove Ecosystems in Coastal Protection
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(62% Open Access)
Cited by:
2,076
h-index:
59
/
i10-index:
115
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

NPR1 Differentially Interacts with Members of the TGA/OBF Family of Transcription Factors That Bind an Element of the PR-1 Gene Required for Induction by Salicylic Acid

Junmei Zhou et al.Feb 1, 2000
NPR1 is a critical component of the salicylic acid (SA)-mediated signal transduction pathway leading to the induction of defense genes, such as the pathogenesis-related (PR)-1 gene, and enhanced disease resistance. Using a yeast two-hybrid screen, we identified several NPR1-interacting proteins (NIPs). Two of these NIPs are members of the TGA/OBF family of basic leucine zipper (bZIP) transcription factors; this family has been implicated in the activation of SA-responsive genes, including PR-1. Six TGA family members were tested and shown to differentially interact with NPR1: TGA2 and TGA3 showed strong affinity for NPR1; TGA5 and TGA6 exhibited weaker affinity; and TGA1 and TGA4 displayed little or no detectable interaction with NPR1, respectively. Interestingly, the amino-termini of these factors were found to decrease their stability in yeast and differentially affect their apparent affinity toward NPR1. The interacting regions on NPR1 and the TGA factors were also defined. Each of four point mutations in NPR1 that disrupt SA signaling in Arabidopsis completely blocked interaction of NPR1 with TGA2 and TGA3. TGA2 and TGA3 were also found to bind the SA-responsive element of the Arabidopsis PR-1 promoter. These results directly link NPR1 to SA-induced PR-1 expression through members of the TGA family of transcription factors.
0
Citation486
0
Save
0

Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants.

Eric Lam et al.Oct 1, 1989
The 35S promoter of cauliflower mosaic virus (CaMV) is able to confer high-level gene expression in most organs of transgenic plants. A cellular factor from pea and tobacco leaf tissue, which recognizes nucleotides in a tandemly repeated TGACG motif at the -75 region of this promoter, has been detected by DNase I footprinting and gel retardation assays. This factor is named activation sequence factor 1 (ASF-1). A cellular factor binding to the two TGACG motifs can also be detected in tobacco root extracts. Mutations at these motifs inhibit binding of ASF-1 to the 35S promoter in vitro. When examined in transgenic tobacco, these mutations cause a 50% drop in leaf expression of the 35S promoter. In addition, these same mutations attenuate stem and root expression of the 35S promoter about 5- to 10-fold when compared to the level of expression in leaf. In contrast, mutations at two adjacent CCAAT-box-like sequences have no dramatic effect on promoter activity in vivo. A 21-base-pair element containing the two TGACG motifs is sufficient for binding of ASF-1 in vitro when inserted in a green-tissue-specific promoter. In vivo, the insertion of an ASF-1 binding site caused high levels of expression in root. Thus, a single factor binding site that is defined by site-specific mutations is shown to be sufficient to alter the expression pattern of promoters in vivo.
0
Citation411
0
Save
0

Electron Transfer at Electrodes through Conjugated “Molecular Wire” Bridges

Stephen Creager et al.Jan 20, 1999
Electron-transfer rates and electronic coupling factors for ferrocene groups attached to gold electrodes via oligo(phenylethynyl) "molecular wire" bridges of variable length and structure are reported. Attachment to gold was achieved via thiol groups at the end of the bridge opposite the ferrocene. Bridge structures were designed to promote strong coupling between gold and ferrocene, thereby promoting rapid electron transport over long distances. The effects of bridge length and of substituents on the phenyl rings in the bridge were addressed. Bridges containing between three and six phenylethynyl units were studied, and a "beta" value of 0.36 Å-1 describing the exponential distance dependence of bridge-mediated electron-transfer rates was obtained. The effect on the rates of adding two propoxy groups onto one of the phenyl rings in the bridge was examined and found to be minimal. The standard electron-transfer rate constant of 350 s-1 obtained for the adsorbate with the longest bridge (six phenylethynyl units, corresponding to an electron-transfer distance of approximately 43 Å) corresponds to an electronic coupling factor between ferrocene and gold of approximately 0.7 cm-1. The extrapolated rate constants at very short distances were nearly the same for the conjugated bridge series and for a related monolayer series in which ferrocene groups were linked to gold via aliphatic bridges. The extrapolated rate constants at short distance also agree with a calculated rate constant for the limiting case of adiabatic electron transfer at an electrode.
0

Phytotoxicity and Innate Immune Responses Induced by Nep1-Like Proteins

Dinah Qutob et al.Dec 1, 2006
Abstract We show that oomycete-derived Nep1 (for necrosis and ethylene-inducing peptide1)–like proteins (NLPs) trigger a comprehensive immune response in Arabidopsis thaliana, comprising posttranslational activation of mitogen-activated protein kinase activity, deposition of callose, production of nitric oxide, reactive oxygen intermediates, ethylene, and the phytoalexin camalexin, as well as cell death. Transcript profiling experiments revealed that NLPs trigger extensive reprogramming of the Arabidopsis transcriptome closely resembling that evoked by bacteria-derived flagellin. NLP-induced cell death is an active, light-dependent process requiring HSP90 but not caspase activity, salicylic acid, jasmonic acid, ethylene, or functional SGT1a/SGT1b. Studies on animal, yeast, moss, and plant cells revealed that sensitivity to NLPs is not a general characteristic of phospholipid bilayer systems but appears to be restricted to dicot plants. NLP-induced cell death does not require an intact plant cell wall, and ectopic expression of NLP in dicot plants resulted in cell death only when the protein was delivered to the apoplast. Our findings strongly suggest that NLP-induced necrosis requires interaction with a target site that is unique to the extracytoplasmic side of dicot plant plasma membranes. We propose that NLPs play dual roles in plant pathogen interactions as toxin-like virulence factors and as triggers of plant innate immune responses.
1

Engineering and characterization of carbohydrate-binding modules to enable real-time imaging of cellulose fibrils biosynthesis in plant protoplasts

Dharanidaran Jayachandran et al.Jan 3, 2023
Summary Carbohydrate binding modules (CBMs) are non-catalytic domains associated with cell wall degrading carbohydrate-active enzymes (CAZymes) that are often present in nature tethered to distinct catalytic domains (CD). Fluorescently labeled CBMs have been also used to visualize the presence of specific polysaccharides present in the cell wall of plant cells and tissues. Previous studies have provided a qualitative analysis of CBM-polysaccharide interactions, with limited characterization of optimal CBM designs for recognizing specific plant cell wall glycans. Furthermore, CBMs also have not been used to study cell wall regeneration in plant protoplasts. Here, we examine the dynamic interactions of engineered type-A CBMs (from families 3a and 64) with crystalline cellulose-I and phosphoric acid swollen cellulose (PASC). We generated tandem CBM designs to determine their binding parameters and reversibility towards cellulose-I using equilibrium binding assays. Kinetic parameters - adsorption ( k on ) and desorption ( k off ) rate constants-for CBMs towards nanocrystalline cellulose were determined using quartz crystal microbalance with dissipation (QCM-D). Our results indicate that tandem CBM3a exhibits a five-fold increased adsorption rate to cellulose compared to single CBM3a, making tandem CBM3a suitable for live-cell imaging applications. We next used engineered CBMs to visualize Arabidopsis thaliana protoplasts with regenerated cell walls using wide-field fluorescence and confocal laser scanning microscopy (CLSM). In summary, tandem CBMs offer a novel polysaccharide labeling probe for real-time visualization of growing cellulose chains in living Arabidopsis protoplasts.
1
Citation3
0
Save
5

Optimization of molecular methods for detection and quantification of specific duckweed-bacteria interactions

Kenneth Acosta et al.Jan 4, 2023
Abstract Bacterial colonization dynamics of plants can differ between phylogenetically similar bacterial strains as well as in the context of complex bacterial communities. Quantitative studies that can resolve closely related bacteria within complex communities can lead to a better understanding of plant-microbe interactions. However, current methods lack the specificity to differentiate phylogenetically similar bacterial strains. In this study, we describe molecular strategies to study specific duckweed-bacteria interactions. We first systematically optimized a bead-beating protocol to co-isolate nucleic acids simultaneously from duckweed and bacteria. We then developed a generic fingerprinting assay to detect bacteria present in duckweed samples. To detect specific duckweed-bacteria interactions, we developed a genomics-based computational pipeline to generate bacterial strain-specific primers. These strain-specific primers differentiated bacterial strains from the same genus and enabled the detection of specific duckweed-bacteria interactions present in a community context. Moreover, we used these strain-specific primers to quantify the bacterial colonization of duckweed by normalization to a plant reference gene and revealed differences in colonization levels between strains from the same genus. Lastly, confocal microscopy of inoculated duckweed further supported our PCR results and showed bacterial colonization of the duckweed root-frond interface and root interior. The molecular methods introduced in this work should enable the tracking and quantification of specific plant-microbe interactions within plant-microbial communities.
0

Time-resolved tracking of cellulose biosynthesis and microfibril network assembly during cell wall regeneration in live Arabidopsis protoplasts

Hyun Huh et al.Jul 30, 2024
Plant cell walls are composed of polysaccharides among which cellulose is the most abundant component. Cellulose is processively synthesized as bundles of linear β-1,4-glucan homopolymer chains via the coordinated action of multiple enzymes in cellulose synthase complexes (CSCs) embedded within the plasma cell membrane. Plant cell walls are composed of multiple layers of cellulose fibrils that form highly intertwined extracellular matrix networks. However, it is not yet clear as to how cellulose fibrils synthesized by multiple CSCs are assembled into the intricate cellulose network deposited on plant cell surfaces. Herein, we have established an in vivo time-resolved imaging platform for visualizing cellulose during its biosynthesis and assembly into a complex fibrillar network on the surface of Arabidopsis thaliana mesophyll protoplasts as the primary cell wall regenerates. We performed total internal reflection fluorescence microscopy (TIRFM) with fluorophore-conjugated tandem carbohydrate binding modules (tdCBMs) that were engineered to specifically bind to nascent cellulose fibrils. Together with a well-controlled environment, it was possible to monitor in vivo cellulose fibril synthesis dynamics in a time-resolved manner for nearly one day of continuous cell wall regeneration on protoplast cell surfaces. Our observations provide the basis for a novel model of cellulose fibril network development in protoplasts driven by complex interplay of multi-scale dynamics that include: rapid diffusion and coalescence of short nascently synthesized cellulose fibrils; processive elongation of single fibrils; and cellulose fibrillar network rearrangement during cell wall maturation. This platform is valuable for exploring mechanistic aspects of cell wall synthesis while visualizing cellulose microfibrils assembly.
1

The genomes and epigenomes of aquatic plants (Lemnaceae) promote triploid hybridization and clonal reproduction

Evan Ernst et al.Aug 5, 2023
Abstract The Lemnaceae (duckweeds) are the world’s smallest but fastest growing flowering plants, with a drastically reduced morphology and predominant clonal reproductive habit capable of continuous exponential growth. Here, we present assemblies of 10 Lemna chromosome sets by single molecule nanopore sequencing and chromosome conformation capture. Dynamics of genome evolution in the family are revealed by syntenic comparisons with Wolffia and Spirodela , and diversification of these genera was found to coincide with the “Azolla event”, in which blooms of aquatic macrophytes reduced atmospheric CO 2 from greenhouse levels found in the Eocene to those of the current ice age. Orthologous gene comparisons with other aquatic and terrestrial plants uncovered candidate genes for the unique metabolic and developmental features of the family, such as frequent hybrid polyploidy, lack of stomatal closure in high CO 2 , and accumulation of calcium oxalate, a promising candidate for carbon sequestration. Loss of a spermine-triggered gene network may account for drastic reduction in stature and preferentially adaxial stomata, a feature of floating aquatic plants. Strikingly, Lemnaceae genomes have selectively lost some of the genes required for RNA interference, including Argonaute genes required for post-zygotic reproductive isolation (the triploid block) and reduced gamete formation. Triploid hybrids arise commonly among Lemna , presumably by hybridization with unreduced gametes, and we have found mutations in highly-conserved ZMM crossover pathway genes that could support polyploid meiosis. Rapid but stable clonal propagation makes Lemna an ideal platform for continuous protein and starch micro-cropping, and for efficient sequestration of dissolved nutrients and atmospheric CO 2 . Facile regeneration of transgenic fronds from tissue culture, aided by reduced epigenetic silencing, makes Lemna a powerful biotechnological platform, as exemplified by recent engineering of high-oil Lemna that out-perform oil seed crops.
Load More