Perovskite solar cells are among the most promising renewable energy devices, and enhancing their stability is crucial for commercialization. This research presents the use of L-Ergothioneine (L-EGT) as a passivation material in perovskite solar cells, strategically placed between the electron transport layer and the perovskite absorber layer to mitigate defect states at the heterojunction interface. Surface analysis reveals that introducing L-EGT passivation material significantly improves the quality of the perovskite film. X-ray diffraction analysis indicates that L-EGT slows down perovskite film degradation and successfully suppresses secondary phase formation. X-ray photoelectron spectroscopic analysis shows that oxygen vacancies in the lattice decrease from 29.21% to 15.81%, while Ti