MD
Martin Diehl
Author with expertise in High-Strength Steel Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(25% Open Access)
Cited by:
2,956
h-index:
29
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design

Cemal Taşan et al.May 4, 2015
Dual-phase (DP) steel is the flagship of advanced high-strength steels, which were the first among various candidate alloy systems to find application in weight-reduced automotive components. On the one hand, this is a metallurgical success story: Lean alloying and simple thermomechanical treatment enable use of less material to accomplish more performance while complying with demanding environmental and economic constraints. On the other hand, the enormous literature on DP steels demonstrates the immense complexity of microstructure physics in multiphase alloys: Roughly 50 years after the first reports on ferrite-martensite steels, there are still various open scientific questions. Fortunately, the last decades witnessed enormous advances in the development of enabling experimental and simulation techniques, significantly improving the understanding of DP steels. This review provides a detailed account of these improvements, focusing specifically on (a) microstructure evolution during processing, (b) experimental characterization of micromechanical behavior, and (c) the simulation of mechanical behavior, to highlight the critical unresolved issues and to guide future research efforts.
0

DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale

Franz Roters et al.Dec 1, 2018
Crystal Plasticity (CP) modeling is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in polycrystalline aggregates. However, when considering the increasingly complex microstructural composition of modern alloys and their exposure to—often harsh—environmental conditions, the focus in materials modeling has shifted towards incorporating more constitutive and internal variable details of the process history and environmental factors into these structure–property relations. Technologically important fields of application of enhanced CP models include phase transformations, hydrogen embrittlement, irradiation damage, fracture, and recrystallization. A number of niche tools, containing multi-physics extensions of the CP method, have been developed to address such topics. Such implementations, while being very useful from a scientific standpoint, are, however, designed for specific applications and substantial efforts are required to extend them into flexible multi-purpose tools for a general end-user community. With the Düsseldorf Advanced Material Simulation Kit (DAMASK) we, therefore, undertake the effort to provide an open, flexible, and easy to use implementation to the scientific community that is highly modular and allows the use and straightforward implementation of different types of constitutive laws and numerical solvers. The internal modular structure of DAMASK follows directly from the hierarchy inherent to the employed continuum description. The highest level handles the partitioning of the prescribed field values on a material point between its underlying microstructural constituents and the subsequent homogenization of the constitutive response of each constituent. The response of each microstructural constituent is determined, at the intermediate level, from the time integration of the underlying constitutive laws for elasticity, plasticity, damage, phase transformation, and heat generation among other coupled multi-physical processes of interest. Various constitutive laws based on evolving internal state variables can be implemented to provide this response at the lowest level. DAMASK already contains various CP-based models to describe metal plasticity as well as constitutive models to incorporate additional effects such as heat production and transfer, damage evolution, and athermal transformations. Furthermore, the implementation of additional constitutive laws and homogenization schemes, as well as the integration of a wide class of suitable boundary and initial value problem solvers, is inherently considered in its modular design.
0
Paper
Citation525
0
Save
0

Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations

Cemal Taşan et al.Jun 21, 2014
Ferritic–martensitic dual phase (DP) steels deform spatially in a highly heterogeneous manner, i.e. with strong strain and stress partitioning at the micro-scale. Such heterogeneity in local strain evolution leads in turn to a spatially heterogeneous damage distribution, and thus, plays an important role in the process of damage inheritance and fracture. To understand and improve DP steels, it is important to identify connections between the observed strain and damage heterogeneity and the underlying microstructural parameters, e.g. ferrite grain size, martensite distribution, martensite fraction, etc. In this work we pursue this aim by conducting in-situ deformation experiments on two different DP steel grades, employing two different microscopic-digital image correlation (μDIC) techniques to achieve microstructural strain maps of representative statistics and high-resolution. The resulting local strain maps are analyzed in connection to the observed damage incidents (identified by image post-processing) and to local stress maps (obtained from crystal plasticity (CP) simulations of the same microstructural area). The results reveal that plasticity is typically initiated within “hot zones” with larger ferritic grains and lower local martensite fraction. With increasing global deformation, damage incidents are most often observed in the boundary of such highly plastified zones. High-resolution μDIC and the corresponding CP simulations reveal the importance of martensite dispersion: zones with bulky martensite are more susceptible to macroscopic localization before the full strain hardening capacity of the material is consumed. Overall, the presented joint analysis establishes an integrated computational materials engineering (ICME) approach for designing advanced DP steels.
0
Paper
Citation453
0
Save
0

A spectral method solution to crystal elasto-viscoplasticity at finite strains

Philip Eisenlohr et al.Oct 3, 2012
A significant improvement over existing models for the prediction of the macromechanical response of structural materials can be achieved by means of a more refined treatment of the underlying micromechanics. For this, achieving the highest possible spatial resolution is advantageous, in order to capture the intricate details of complex microstructures. Spectral methods, as an efficient alternative to the widely used finite element method (FEM), have been established during the last decade and their applicability to the case of polycrystalline materials has already been demonstrated. However, until now, the existing implementations were limited to infinitesimal strain and phenomenological crystal elasto-viscoplasticity. This work presents the extension of the existing spectral formulation for polycrystals to the case of finite strains, not limited to a particular constitutive law, by considering a general material model implementation. By interfacing the exact same material model to both, the new spectral implementation as well as a FEM-based solver, a direct comparison of both numerical strategies is possible. Carrying out this comparison, and using a phenomenological constitutive law as example, we demonstrate that the spectral method solution converges much faster with mesh/grid resolution, fulfills stress equilibrium and strain compatibility much better, and is able to solve the micromechanical problem for, e.g., a 2563 grid in comparable times as required by a 643 mesh of linear finite elements.
0
Paper
Citation366
0
Save
0

Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys

Cemal Taşan et al.Sep 19, 2014
The mechanical response of multiphase alloys is governed by the microscopic strain and stress partitioning behavior among microstructural constituents. However, due to limitations in the characterization of the partitioning that takes place at the submicron scale, microstructure optimization of such alloys is typically based on evaluating the averaged response, referring to, for example, macroscopic stress–strain curves. Here, a novel experimental–numerical methodology is introduced to strengthen the integrated understanding of the microstructure and mechanical properties of these alloys, enabling joint analyses of deformation-induced evolution of the microstructure, and the strain and stress distribution therein, down to submicron resolution. From the experiments, deformation-induced evolution of (i) the microstructure, and (ii) the local strain distribution are concurrently captured, employing in situ secondary electron imaging and electron backscatter diffraction (EBSD) (for the former), and microscopic-digital image correlation (for the latter). From the simulations, local strain as well as stress distributions are revealed, through 2-D full-field crystal plasticity (CP) simulations conducted with an advanced spectral solver suitable for heterogeneous materials. The simulated model is designed directly from the initial EBSD measurements, and the phase properties are obtained by additional inverse CP simulations of nanoindentation experiments carried out on the original microstructure. The experiments and simulations demonstrate good correlation in the proof-of-principle study conducted here on a martensite–ferrite dual-phase steel, and deviations are discussed in terms of limitations of the techniques involved. Overall, the presented integrated computational materials engineering approach provides a vast amount of well-correlated structural and mechanical data that enhance our understanding as well as the design capabilities of multiphase alloys.
0
Citation313
0
Save