Lignin, as one of the few renewable resources among aromatic compounds, exhibits significant potential for applications in the agricultural sector. Nonetheless, there has been relatively limited research on the effects of lignin-based controlled-release urea (LCRU) on soil nitrogen nutrition and bacterial diversity. In this paper, the impact of LCRU on the growth of choy sum was investigated through a two-season field experiment. The findings suggest that the plant height, stem diameter, SPAD value, and above-ground dry weight under LCRU application surpassed those with conventional urea (CU), increasing by 40.27%, 26.97%, 52.02%, and 38.62%, respectively. Furthermore, the condition that the urea content was reduced by 15% (LCRU15) caused improvements of 24.76%, 26.97%, 43.23%, and 30.86% in the respective variables. Additionally, compared with the CU, the contents of vitamin C, soluble sugar, and soluble protein in choy sum were increased by the LCRU and LCRU15 treatments, and yet no significant differences were observed between the LCRU and LCRU15 treatments. Notably, the nitrogen used efficiency of choy sum increased to 68.90% with the LCRU15 treatment, compared to 64.29% with the LCRU treatment. The levels of soil available nitrogen, NO