AJ
Amy Jones
Author with expertise in Stratospheric Chemistry and Climate Change Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
1,820
h-index:
27
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Molecfit: A general tool for telluric absorption correction

A. Smette et al.Feb 5, 2015
Context: The interaction of the light from astronomical objects with the constituents of the Earth's atmosphere leads to the formation of telluric absorption lines in ground-based collected spectra. Correcting for these lines, mostly affecting the red and infrared region of the spectrum, usually relies on observations of specific stars obtained close in time and airmass to the science targets, therefore using precious observing time. Aims: We present molecfit, a tool for correcting for telluric absorption lines based on synthetic modelling of the Earth's atmospheric transmission. Molecfit is versatile and can be used with data obtained with various ground-based telescopes and instruments. Methods: Molecfit combines a publicly available radiative transfer code, a molecular line database, atmospheric profiles, and various kernels to model the instrument line spread function. The atmospheric profiles are created by merging a standard atmospheric profile representative of a given observatory's climate, of local meteorological data, and of dynamically retrieved altitude profiles for temperature, pressure, and humidity. We discuss the various ingredients of the method, its applicability, and its limitations. We also show examples of telluric line correction on spectra obtained with a suite of ESO Very Large Telescope (VLT) instruments. Results: Compared to previous similar tools, molecfit takes the best results for temperature, pressure, and humidity in the atmosphere above the observatory into account. As a result, the standard deviation of the residuals after correction of unsaturated telluric lines is frequently better than 2% of the continuum. Conclusion: Molecfit is able to accurately model and correct for telluric lines over a broad range of wavelengths and spectral resolutions. (Abridged)
0
Paper
Citation527
0
Save
0

Molecfit: A general tool for telluric absorption correction

Wolfgang Kausch et al.Jan 13, 2015
Context: Absorption by molecules in the Earth's atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, temperature, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims: We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT X-Shooter visible and near-infrared spectra. Methods: Thanks to the wavelength coverage from the U to the K band, X-Shooter is well suited to investigate the quality of the telluric absorption correction with respect to the observing conditions, the instrumental set-up, input parameters of the code, the signal-to-noise of the input spectrum, and the atmospheric profiles. These investigations are based on two figures of merit, I_off and I_res, that describe the systematic offsets and the remaining small-scale residuals of the corrections. We also compare the quality of the telluric absorption correction achieved with moelcfit to the classical method based on a telluric standard star. (Abridged)
0
Paper
Citation360
0
Save
0

The SDSS-IV MaNGA Sample: Design, Optimization, and Usage Considerations

David Wake et al.Aug 4, 2017
We describe the sample design for the SDSS-IV MaNGA survey and present the final properties of the main samples along with important considerations for using these samples for science. Our target selection criteria were developed while simultaneously optimizing the size distribution of the MaNGA integral field units (IFUs), the IFU allocation strategy, and the target density to produce a survey defined in terms of maximizing S/N, spatial resolution, and sample size. Our selection strategy makes use of redshift limits that only depend on i-band absolute magnitude ($M_i$), or, for a small subset of our sample, $M_i$ and color (NUV-i). Such a strategy ensures that all galaxies span the same range in angular size irrespective of luminosity and are therefore covered evenly by the adopted range of IFU sizes. We define three samples: the Primary and Secondary samples are selected to have a flat number density with respect to $M_i$ and are targeted to have spectroscopic coverage to 1.5 and 2.5 effective radii (Re), respectively. The Color-Enhanced supplement increases the number of galaxies in the low-density regions of color-magnitude space by extending the redshift limits of the Primary sample in the appropriate color bins. The samples cover the stellar mass range $5\times10^8 \leq M_* \leq 3\times10^{11} M_{\odot}$ and are sampled at median physical resolutions of 1.37 kpc and 2.5 kpc for the Primary and Secondary samples respectively. We provide weights that will statistically correct for our luminosity and color-dependent selection function and IFU allocation strategy, thus correcting the observed sample to a volume limited sample.
0

An atmospheric radiation model for Cerro Paranal

S. Noll et al.May 11, 2012
The Earth's atmosphere affects ground-based astronomical observations. Scattering, absorption, and radiation processes deteriorate the signal-to-noise ratio of the data received. For scheduling astronomical observations it is, therefore, important to accurately estimate the wavelength-dependent effect of the Earth's atmosphere on the observed flux. In order to increase the accuracy of the exposure time calculator of the European Southern Observatory's (ESO) Very Large Telescope (VLT) at Cerro Paranal, an atmospheric model was developed as part of the Austrian ESO In-Kind contribution. It includes all relevant components, such as scattered moonlight, scattered starlight, zodiacal light, atmospheric thermal radiation and absorption, and non-thermal airglow emission. This paper focuses on atmospheric scattering processes that mostly affect the blue (< 0.55 mum) wavelength regime, and airglow emission lines and continuum that dominate the red (> 0.55 mum) wavelength regime. While the former is mainly investigated by means of radiative transfer models, the intensity and variability of the latter is studied with a sample of 1186 VLT FORS1 spectra. For a set of parameters such as the object altitude angle, Moon-object angular distance, ecliptic latitude, bimonthly period, and solar radio flux, our model predicts atmospheric radiation and transmission at a requested resolution. A comparison of our model with the FORS1 spectra and photometric data for the night-sky brightness from the literature, suggest a model accuracy of about 20%. This is a significant improvement with respect to existing predictive atmospheric models for astronomical exposure time calculators.
0

THE DATA REDUCTION PIPELINE FOR THE SDSS-IV MaNGA IFU GALAXY SURVEY

David Law et al.Sep 12, 2016
ABSTRACT Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622–10354 Å and an average footprint of ∼500 arcsec 2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ∼100 million raw-frame spectra and ∼10 million reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ∼8500 Å and reach a typical 10 σ limiting continuum surface brightness μ = 23.5 AB arcsec −2 in a five-arcsecond-diameter aperture in the g -band. The wavelength calibration of the MaNGA data is accurate to 5 km s −1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s −1 .
0

SDSS-IV MaNGA: the impact of diffuse ionized gas on emission-line ratios, interpretation of diagnostic diagrams and gas metallicity measurements

Kai Zhang et al.Dec 19, 2016
Diffuse ionized gas (DIG) is prevalent in star-forming galaxies. Using a sample of 365 nearly face-on star-forming galaxies observed by Mapping Nearby Galaxies at APO, we demonstrate how DIG in star-forming galaxies impacts the measurements of emission-line ratios, hence the interpretation of diagnostic diagrams and gas-phase metallicity measurements. At fixed metallicity, DIG-dominated low ΣHα regions display enhanced [S ii]/Hα, [N ii]/Hα, [O ii]/Hβ and [O i]/Hα. The gradients in these line ratios are determined by metallicity gradients and ΣHα. In line ratio diagnostic diagrams, contamination by DIG moves H ii regions towards composite or low-ionization nuclear emission-line region (LI(N)ER)-like regions. A harder ionizing spectrum is needed to explain DIG line ratios. Leaky H ii region models can only shift line ratios slightly relative to H ii region models, and thus fail to explain the composite/LI(N)ER line ratios displayed by DIG. Our result favours ionization by evolved stars as a major ionization source for DIG with LI(N)ER-like emission. DIG can significantly bias the measurement of gas metallicity and metallicity gradients derived using strong-line methods. Metallicities derived using N2O2 are optimal because they exhibit the smallest bias and error. Using O3N2, R23, N2 = [N ii]/Hα and N2S2Hα to derive metallicities introduces bias in the derived metallicity gradients as large as the gradient itself. The strong-line method of Blanc et al. (IZI hereafter) cannot be applied to DIG to get an accurate metallicity because it currently contains only H ii region models that fail to describe the DIG.
0

SDSS-V Local Volume Mapper (LVM): A glimpse into Orion

Kathryn Kreckel et al.Aug 7, 2024
The Orion Molecular Cloud complex, one of the nearest (D = 406 pc) and most extensively studied massive star-forming regions, is ideal for constraining the physics of stellar feedback, but its sim 12 deg diameter on the sky requires a dedicated approach to mapping ionized gas structures within and around the nebula. The Sloan Digital Sky Survey (SDSS-V) Local Volume Mapper (LVM) is a new optical integral field unit (IFU) that will map the ionized gas within the Milky Way and Local Group galaxies, covering 4300 deg$^2$ of the sky with the new LVM Instrument (LMV-I). We showcase optical emission line maps from LVM covering 12 deg$^2$ inside of the Orion belt region, with 195,000 individual spectra combined to produce images at 0.07 pc (35.3 resolution. This is the largest IFU map made (to date) of the Milky Way, and contains well-known nebulae (the Horsehead Nebula, Flame Nebula, IC 434, and IC 432), as well as ionized interfaces with the neighboring dense Orion B molecular cloud. We resolve the ionization structure of each nebula, and map the increase in both the and line ratios at the outskirts of nebulae and along the ionization front with Orion B. line emission is only spatially resolved within the center of the Flame Nebula and IC 434, and our sim 0.1 pc scale line ratio diagrams show how variations in these diagnostics are lost as we move from the resolved to the integrated view of each nebula. We detect ionized gas emission associated with the dusty bow wave driven ahead of the star sigma Orionis, where the stellar wind interacts with the ambient interstellar medium. The Horsehead Nebula is seen as a dark occlusion of the bright surrounding photo-disassociation region. This small glimpse into Orion only hints at the rich science that will be enabled by the LVM.