LW
Liguang Wang
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(33% Open Access)
Cited by:
2,409
h-index:
45
/
i10-index:
97
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Origin of structural degradation in Li-rich layered oxide cathode

Tongchao Liu et al.Jun 8, 2022
Li- and Mn-rich (LMR) cathode materials that utilize both cation and anion redox can yield substantial increases in battery energy density1–3. However, although voltage decay issues cause continuous energy loss and impede commercialization, the prerequisite driving force for this phenomenon remains a mystery3–6 Here, with in situ nanoscale sensitive coherent X-ray diffraction imaging techniques, we reveal that nanostrain and lattice displacement accumulate continuously during operation of the cell. Evidence shows that this effect is the driving force for both structure degradation and oxygen loss, which trigger the well-known rapid voltage decay in LMR cathodes. By carrying out micro- to macro-length characterizations that span atomic structure, the primary particle, multiparticle and electrode levels, we demonstrate that the heterogeneous nature of LMR cathodes inevitably causes pernicious phase displacement/strain, which cannot be eliminated by conventional doping or coating methods. We therefore propose mesostructural design as a strategy to mitigate lattice displacement and inhomogeneous electrochemical/structural evolutions, thereby achieving stable voltage and capacity profiles. These findings highlight the significance of lattice strain/displacement in causing voltage decay and will inspire a wave of efforts to unlock the potential of the broad-scale commercialization of LMR cathode materials. Diffractive imaging of an important class of battery electrodes during cycling shows that lattice strain is a crucial yet overlooked factor that contributes to voltage fade over time.
0

Radially Oriented Single‐Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium‐Ion Batteries

Xingtao Xu et al.Feb 15, 2019
Abstract Ni‐rich Li[Ni x Co y Mn 1− x − y ]O 2 ( x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g −1 . Unfortunately, the anisotropic properties associated with the α‐NaFeO 2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li + ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li + diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g −1 at 3.0–4.3 V) and rate capability (152.7 mAh g −1 at a current density of 1000 mA g −1 ). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials.
0

Architecting a Stable High-Energy Aqueous Al-Ion Battery

Chunshuang Yan et al.Aug 11, 2020
Aqueous Al-ion batteries (AAIBs) are the subject of great interest due to the inherent safety and high theoretical capacity of aluminum. The high abundancy and easy accessibility of aluminum raw materials further make AAIBs appealing for grid-scale energy storage. However, the passivating oxide film formation and hydrogen side reactions at the aluminum anode as well as limited availability of the cathode lead to low discharge voltage and poor cycling stability. Here, we proposed a new AAIB system consisting of an AlxMnO2 cathode, a zinc substrate-supported Zn-Al alloy anode, and an Al(OTF)3 aqueous electrolyte. Through the in situ electrochemical activation of MnO, the cathode was synthesized to incorporate a two-electron reaction, thus enabling its high theoretical capacity. The anode was realized by a simple deposition process of Al3+ onto Zn foil substrate. The featured alloy interface layer can effectively alleviate the passivation and suppress the dendrite growth, ensuring ultralong-term stable aluminum stripping/plating. The architected cell delivers a record-high discharge voltage plateau near 1.6 V and specific capacity of 460 mAh g-1 for over 80 cycles. This work provides new opportunities for the development of high-performance and low-cost AAIBs for practical applications.
0
Paper
Citation247
0
Save
0

A General Method for Transition Metal Single Atoms Anchored on Honeycomb‐Like Nitrogen‐Doped Carbon Nanosheets

Xiaoyan Zhang et al.Jan 31, 2020
Excavating and developing highly efficient and cost-effective nonnoble metal single-atom catalysts for electrocatalytic reactions is of paramount significance but still in its infancy. Herein, reported is a general NaCl template-assisted strategy for rationally designing and preparing a series of isolated transition metal single atoms (Fe/Co/Ni) anchored on honeycomb-like nitrogen-doped carbon matrix (M1 -HNC-T1 -T2 , M = Fe/Co/Ni, T1 = 500 °C, T2 = 850 °C). The resulting M1 -HNC-500-850 with M-N4 active sites exhibits superior capability for oxygen reduction reaction (ORR) with the half-wave potential order of Fe1 -HNC-500-850 > Co1 -HNC-500-850 > Ni1 -HNC-500-850, in which Fe1 -HNC-500-850 shows better performance than commercial Pt/C. Density functional theory calculations reveal a choice strategy that the strong p-d-coupled spatial charge separation results the Fe-N4 effectively merges active electrons for elevating d-band activity in a van-Hove singularity like character. This essentially generalizes an optimal electronic exchange-and-transfer (ExT) capability for boosting sluggish alkaline ORR activity. This work not only presents a universal strategy for preparing single-atom electrocatalyst to accelerate the kinetics of cathodic ORR but also provides an insight into the relationship between the electronic structure and the electrocatalytical activity.
0

Unveiling the Structure and Diffusion Kinetics at the Composite Electrolyte Interface in Solid‐State Batteries

Xueyan Zhang et al.Jun 7, 2024
Abstract The “interface” between polymer and oxide within the polymer‐oxide composite electrolytes is widely acknowledged as a crucial factor influencing ionic conduction. However, a fundamental understanding of the precise composition and/or micro‐structure, and the ionic conduction mechanism at the complex interface has remained elusive, primarily due to a dearth of compelling experimental evidence. In this study, the intricate correlation between morphology and composition in composite electrolytes is discerned by leveraging advanced 1D and 2D exchange nuclear magnetic resonance spectroscopy (1D and 2D EXSY NMR) techniques. Notably, this research represents the inaugural elucidation of the microstructure of the interface. The findings underscore the pivotal role of the preparation conditions for polymer‐oxide composite electrolytes, particularly the solvent selection, in determining the formation of the interface structure. Direct insights into the lithium‐deficient surface of Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO) are provided and elucidate the timescales of Li‐ion exchange processes among various components. Furthermore, a comprehensive investigation into the roles of individual components within the composite electrolyte on the Li‐ion conduction mechanism is conducted through the 6 Li→ 7 Li isotope tracer technique as a function of current density.
0
Citation1
0
Save
Load More