MN
Mats Niklasson
Author with expertise in Impact of Climate Change on Forest Wildfires
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
695
h-index:
35
/
i10-index:
57
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

NUMBERS AND SIZES OF FIRES: LONG-TERM SPATIALLY EXPLICIT FIRE HISTORY IN A SWEDISH BOREAL LANDSCAPE

Mats Niklasson et al.Jun 1, 2000
The spatial display of fire over time on the landscape is ecologically important, and spatially explicit analyses offer a possibility of revealing anthropogenic influence on fire regimes. Nonetheless few such analyses have been attempted for longer time frames. We identified past fires in a northern Swedish boreal landscape using fire scars on Pinus sylvestris trees. Within a 19 × 32 km area, local fire chronologies were established at 203 points by cross-dating fire scars on 1133 wood samples, the earliest dating back to the 1100s. A total of 349 separate fires were identified to location and size. The estimated number of fires per unit area and time (after correcting for varying sample density over time) was relatively constant at 0.095 fires·(104 ha)−1·yr−1 from 1350 to 1650. It increased gradually thereafter, except for a low period in the early 1700s, peaked at 1.17 fires·(104 ha)−1·yr−1 in the mid-1800s, and then dropped dramatically after 1860. The proportion of the area burned per unit time also increased after 1650, in parallel with the increase in the number of fires (although much less strongly due to a counteracting trend in fire size), from an annual rate of 0.8% prior to 1650 to 2.8% in the mid-1800s. Prior to 1650, 90% of the total burned area was due to fires larger than 1000 ha, compared to 55% after 1650. This decrease in fire size with increasing number of fires may be an intrinsic property of the system: a negative feedback caused by lack of fuel in early succession. Fire intervals shorter than 15 yr were rare, and there was an increase in the hazard of burning during the first 3–5 decades after fire, suggesting an effect of fuel accumulation. Thus, the proportion of the area burned per unit time does not increase linearly with the number of fires in the landscape, because the probability that fires will stop at boundaries with recently burned areas increases over fires. The changes in the number of fires per unit time mirror changes in the cultural use of the land, i.e., the gradual expansion of permanent settlements in the area after the late 1600s. They are not explained by changes in climate records. This suggests that the increase in fire numbers from the second half of the 1600s represents an increase in anthropogenic fires. Before 1650, the number of fires detected per unit area and time was only marginally different from the present-day density of lightning ignitions in the region (∼ 0.1 fires·(104 ha)−1·yr−1), whereas during the mid 1800s it was 11.7 times higher. These results show that large alterations in the fire regime can occur without substantial changes in the proportion of area burned per unit time, as exemplified by the trend after 1650, when there were concurrent changes in the number of fires and in average fire size. Therefore, the number of fire events per unit area and time should be an important variable in the analysis of fire history and its underlying causes.
0
Paper
Citation457
0
Save
0

Ecological comparison of native (Apis mellifera mellifera) and hybrid (Buckfast) honeybee drones in southwestern Sweden indicates local adaptation

Friederike Schaumann et al.Aug 13, 2024
Honeybee drones’ only known task is to mate with a virgin queen. Apart from their mating behaviour, their ecology has been little studied, especially in comparison to honeybee females. Previous knowledge is primarily based on short-term direct observations at single experimental hives, rarely, if ever, addressing the effect of drones’ genetic origin. Here, Radio Frequency Identification Technology was utilised to gather drone and worker bee lifetime data of Apis mellifera mellifera and Apis mellifera x (hybrid Buckfast) colonies over one mating season (spring and summer) with the ultimate goal to investigate differences at subspecies level. This technique enabled continuous monitoring of tagged bees at the hive entrance and recording of individuals’ movement directions. The results confirmed that spring-born drones survive longer than summer-born drones and that they generally live longer than worker bees. Drones’ peak activity occurred in the afternoon while worker bees showed more even activity levels throughout the day. Earlier orientation flights than usually reported for drones were observed. In summer, mating flights were practiced before reaching sexual maturity (at 12 days of age). Differences were found between Apis m . mellifera and Buckfast drones, where Apis m . mellifera showed later drone production in spring, but significantly earlier first activities outside the hive in summer and a later peak in diurnal activity. Additionally, Apis m . mellifera flew more in higher light intensities and windy conditions and performed significantly longer flights than Buckfast drones. The observed differences in drone ecology indicate the existence of a local adaptation of the native subspecies Apis m . mellifera to environmental conditions in southwestern Sweden.
21

Assessing changes in global fire regimes

Sayedeh Sayedi et al.Feb 8, 2023
Abstract Human activity has fundamentally altered wildfire on Earth, creating serious consequences for human health, global biodiversity, and climate change. However, it remains difficult to predict fire interactions with land use, management, and climate change, representing a serious knowledge gap and vulnerability. We used expert assessment to combine opinions about past and future fire regimes from 98 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Respondents indicated that direct human activity was already influencing wildfires locally since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime until around 5000 years BP. Responses showed a ten-fold increase in the rate of wildfire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in fire frequency, severity, and/or size in all biomes except grassland ecosystems. Fire regime showed quite different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher greenhouse gas emission scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, concluding that management options are seriously constrained under higher emission scenarios.
21
0
Save